机器学习算法实战案例:BiLSTM实现多变量多步光伏预测

发布时间:2024年01月16日

1 数据处理

1.1 导入库文件
1.2 导入数据集

实验数据集采用数据集8:新疆光伏风电数据集,数据集包括组件温度(℃) 、温度(°) 气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化:

from itertools import cycle

def visualize_data(data, row, col):

    cycol = cycle('bgrcmk')

    cols = list(data.columns)

    fig, axes = plt.subplots(row, col, figsize=(16, 4))

    if row == 1 and col == 1:  # 处理只有1行1列的情况

        axes = [axes]  # 转换为列表,方便统一处理

    for i, ax in enumerate(axes.flat):

        if i < len(cols):

            ax.plot(data.iloc[:,i], c=next(cycol))

            ax.set_title(cols[i])

            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图

    plt.subplots_adjust(hspace=0.6)

visualize_data(data_raw.iloc[:,1:], 2, 4)

?

?单独查看部分功率数据,发现有较强的规律性。

??因为只是单变量预测,只选取实际发电功率(mw)数据进行实验:

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

?进一步统计缺失值

data_raw.isnull().sum()

2 构造训练数据

首先将数据转化为数字类型

data = data_raw.iloc[:,1:].values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

通过前5天的timesteps数据预测后一天的数据predict_steps个,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分,不然后面归一化会有信息泄露的问题。

?数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,函数的定义如下:

def data_scaler(datax,datay):

    scaler1 = MinMaxScaler(feature_range=(0,1))

    scaler2 = MinMaxScaler(feature_range=(0,1))

    datax = scaler1.fit_transform(datax)

    datay = scaler2.fit_transform(datay)

    # 用前面的数据进行训练,留最后的数据进行预测

    trainx, trainy = create_dataset(datax[:-timesteps-predict_steps,:],datay[:-timesteps-predict_steps,0],timesteps, predict_steps)

    trainx = np.array(trainx)

    trainy = np.array(trainy)

    return trainx, trainy, scaler1, scaler2

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的数据96个,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

?

3 模型训练

3.1 BiLSTM网络

长短期记忆神经网络(Long Short-Term Memory, LSTM) 是一种时间循环神经网络,是为
了解决一般的RNN存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经
网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一
个tanh层。 LSTM神经网络采用门控机制替换了循环神经网络简单的隐含层神经元, 可以解决长
期依赖的问题,在处理时序问题上表现出色。

LSTM 神经网络

传统的 LSTM 网络只能根据历史状态向前编码,无法考虑反向序列的影响。而电力负荷数
据变化与时间发展密切相关,未来数据通常与过去数据相似, 为了更全面、准确地预测,需要
考虑反向序列的影响。 双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,
BiLSTM) 引入了双向计算的思想,它可以实现基于原始的 LSTM 网络同时进行正向和反向计
算, 可以同时提取前向和后向信息,更好地挖掘负荷数据的时序特征,进一步提高预测模型精度。

BiLSTM 神经网络

可以通过Bidirectional()来构建一个BiLSTM模型并进行训练的过程,实现主体代码如下:

  model.add(Bidirectional(LSTM(units=50, return_sequences=True), input_shape=(timesteps, feature_num)))

  model.add(Bidirectional(LSTM(units=100, return_sequences=True), input_shape=(timesteps, feature_num)))

  model.add(Bidirectional(LSTM(units=150)))
  • units=50:表示LSTM层中有50个神经元
  • return_sequences=True:表示该层返回整个序列而不仅仅是输出序列的最后一个
  • input_shape=(timesteps, feature_num):表示输入数据的形状为(timesteps, feature_num),这里timesteps和feature_num是预先定义好的输入数据的时间步数和特征数。

第一行代码向模型中再次添加了一个双向的LSTM层,使用了units=50个神经元。

第二行代码向模型中再次添加了一个双向的LSTM层,与上一行类似,但这次使用了units=100个神经元。

第三行代码向模型中添加了另一个双向的LSTM层,这次没有设置return_sequences=True,表示该层不返回整个序列,而是只返回输出序列的最后一个值。

3.2 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本。此时input_shape划分数据集时每个x的形状。(建议使用GPU进行训练,因为本人电脑性能有限,建议增加epochs值;也可以依次增加LSTM网络中units)

def BiLSTM_model_train(trainx, trainy):

    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')

        tf.config.experimental.set_memory_growth(gpu, True)

    start_time = datetime.datetime.now()

    model.add(Bidirectional(LSTM(units=50, return_sequences=True), input_shape=(timesteps, feature_num)))

    model.add(Bidirectional(LSTM(units=150)))

    model.add(Dropout(0.1))

    model.add(Dense(predict_steps))

    model.compile(loss='mse', optimizer='adam')

    model.fit(trainx, trainy, epochs=50, batch_size=64)

    end_time = datetime.datetime.now()

    running_time = end_time - start_time

    model.save('BiLSTM_model.h5')
model = BiLSTM_model_train(trainx, trainy)

4 模型预测

首先加载训练好后的模型

from tensorflow.keras.models import load_model

model = load_model('BiLSTM_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]

x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。

def predict_and_plot(x, y_true, model, scaler, timesteps):

    predict_x = np.reshape(x, (1, timesteps, feature_num))  

    predict_y = model.predict(predict_x)

    predict_y = scaler.inverse_transform(predict_y)

    y_predict.extend(predict_y[0])

    r2 = r2_score(y_true, y_predict)

    mae = mean_absolute_error(y_true, y_predict)

    mape = mean_absolute_percentage_error(y_true, y_predict)

    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))

    cycol = cycle('bgrcmk')

    plt.figure(dpi=100, figsize=(14, 5))

    plt.plot(y_true, c=next(cycol), markevery=5)

    plt.plot(y_predict, c=next(cycol), markevery=5)

    plt.legend(['y_true', 'y_predict'])
y_predict_nowork = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果,发下可视化结果并不是太好,可以通过调参和数据处理进一步提升模型预测效果。

答疑&技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

本文完整代码、相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

?方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
方式②、添加微信号:dkl88194,备注:来自CSDN + 技术交流

机器学习算法实战案例系列

文章来源:https://blog.csdn.net/2301_78285120/article/details/135602440
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。