负载均衡无处不在,无论是分布式,还是中间件,还是微服务,都需要涉及到负载均衡。
负载均衡是一种在计算机网络和系统架构中使用的技术,用于均衡分发工作负载到多个资源,比如:服务器、计算节点或存储设备上,以提高系统的性能、可伸缩性。
如下图所示:
在传统的单个服务器架构中,当请求量增加时,单个服务器可能无法处理所有的请求,导致性能下降或系统崩溃。
负载均衡技术通过将负载(请求)分发到多个服务器上,实现资源的合理利用,从而平衡服务器的负载。
这样可以提高系统的处理能力,增加并发处理能力,并减少单点故障的风险。
负载均衡的作用,主要包含如下几点:
负载均衡技术将负载(请求或任务)分发到多个资源上,使得系统能够处理更多的并发请求,从而提高整体的处理能力和性能。
负载均衡可以将负载分发到多个资源上,当其中一个资源发生故障或不可用时,负载均衡可以自动将请求转发到其他可用的资源。
这样可以降低单点故障的风险,提高系统的可靠性和容错性。
随着业务的增长,负载均衡技术可以动态地增加或减少资源的数量,根据实际负载情况进行扩展或收缩。
通过自动分配负载到新增的资源上,系统可以实现水平扩展,满足不断增长的需求,提高系统的可伸缩性。
负载均衡技术可以根据资源的性能、可用性和负载情况,合理地分配请求或任务。
这样可以最大限度地利用资源,避免资源的空闲或过载,提高资源的利用率和效率。
系统的扩展可分为纵向(垂直)扩展和横向(水平)扩展。
比如:纵向扩展,是从单机的角度通过增加硬件处理能力,比如CPU处理能力,内存容量,磁盘等方面,实现服务器处理能力的提升。这种情况,不能满足大型分布式系统(网站),大流量,高并发,海量数据的问题。
因此需要采用横向扩展的方式,通过添加机器来满足大型网站服务的处理能力,比如:一台机器不能满足,则增加两台或者多台机器,共同承担访问压力。
如下图所示:
负载均衡器作为一个中间层,接收来自客户端的请求,并根据特定的算法和策略将请求分发给后端的多个资源(如服务器、计算节点或存储设备)。客户端可以直接将请求发送给负载均衡器,或通过域名解析、DNS等方式间接连接到负载均衡器。
负载均衡算法,主要分为如下5类:
轮询,顾名思义,把请求按顺序分配给每个服务器,然后重复执行这个顺序,进行请求分配。
假设有3台服务器,分别为A,B,C,当客户端有请求过来时,请求会按照A——>B——>C——>A——>B——>C...这种轮训的顺序分配给各个服务器。
原理:
在轮询的基础上根据硬件配置不同,按权重分发到不同的服务器,适合场景:跟配置高、负载低的机器分配更高的权重,使其能处理更多的请求。
记录每个服务器正在处理的请求数,把新的请求分发到最少连接的服务器上,因为要维护内部状态不推荐。
优点:
缺点:
IP/URL 散列算法是一种根据客户端 IP 地址或 URL 来分配请求的负载均衡算法,这样相同的IP或者URL就会负载到相同的服务器上。
优点:
缺点:
静态环境:在静态环境中,即客户端的 IP 地址或请求的 URL 不经常变化的情况下,IP/URL Hash 算法可以提供稳定的负载均衡。
少数服务器的负载均衡:当服务器数量相对较少且不太容易动态扩展时,IP/URL Hash 算法可以用于基本的负载均衡。
最短响应时间就是指:处理请求的响应时间最少的服务器,获取的请求就越多。直白讲就是速度快,就干的多。
负载均衡的所有服务器,处理能力相差比较大。比如:有3台服务器,服务器A(4C8G,4个CPU,8G内存),服务器B(2C4G,2个CPU,4G内存),服务器C(1C2G,1个CPU,2G内存), 那么就可以采用这种算法,这样可以根据服务器的处理来实现动态负载。
交通控制系统:在城市交通控制系统中,需要及时响应交通信号、路况和车辆检测等信息。最短响应时间算法可以帮助确保交通信号及时适应交通流量的变化。
优点:可以充分发挥各个服务器的性能,提高服务器的利用率。
缺点:饥饿问题。比如,服务器A的性能最好,处理速度最快,那么所有的请求都会被分配到服务器A,这样服务器B和服务器C就会一直处于饥饿状态,无法处理请求。这样也就会产生不公平。
负载均衡主要分为:二层、三层、四层、以及七层负载均衡。
根据OSI模型分的二层负载,一般是用虚拟mac地址方式,外部对虚拟MAC地址请求,负载均衡接收后分配后端实际的MAC地址响应)。
一般采用虚拟IP地址方式,外部对虚拟的ip地址请求,负载均衡接收后分配后端实际的IP地址响应。
四层负载均衡就是基于IP 端口的负载均衡,在三次负载均衡的基础上,用ip port接收请求,再转发到对应机器。
实现四层负载均衡的软件有:
七层的负载均衡,就是基于虚拟的URL或主机IP的负载均衡,根据虚拟的url或IP,主机名接收请求,再转向相应的处理服务器。
实现七层负载均衡的软件有:
总的来说,一般是lvs做4层负载;nginx做7层负载。
负载均衡技术可以应用于多种场景,包括但不限于以下几个方面:
在Web应用中,负载均衡可以将请求分发到多个Web服务器上,以提高并发处理能力和吞吐量,适用于高访问量的网站、电子商务平台等场景。
对于数据库集群,负载均衡可以将数据库请求分发到多个数据库节点上,实现数据的分布和负载的均衡,这有助于提高数据库的处理能力、可靠性和可伸缩性。
在分布式应用中,负载均衡可以将请求分发给多个应用服务器实例,以平衡工作负载和提高系统的性能,这适用于微服务架构、分布式计算、消息队列等场景。
在科学计算、大数据处理和高性能计算领域,负载均衡技术可以将计算任务分发到多个计算节点上,实现任务的并行处理和加速,它适用于集群计算、分布式存储、数据分析等场景。