本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang
This lecture introduces basic concepts and results on Lyapunov stability of nonlinear systems
asymptotic/??simp't?tik,-k?l/ 渐进的
behavior (not too much about transient/'tr?nz??nt/短暂的
)Closed-loop dynamics under adaptive control:
{
y
˙
=
y
+
u
u
=
?
k
y
,
k
˙
=
y
2
\begin{cases} \dot{y}=y+u\\ u=-ky,\dot{k}=y^2\\ \end{cases}
{y˙?=y+uu=?ky,k˙=y2?
Definition 1 (Equilibrium Point) - 平衡点
A state x ? x^* x? is an equilibrium point of system (1) if once x ( t ) = x ? x\left( t \right) =x^* x(t)=x? , it remains equal to x ? x^* x? at all future time.
Definition 2 (Invariant Set) - 不变集
A set E E E is an invariant set of system (1) if every trajectory which starts from a point E E E remains in E E E at all future time.
Stability :
Consider a time-invariant autonomous (with no control) nonlinear system : (on closed-loop system :
x
˙
=
f
(
x
,
u
(
x
)
)
=
f
c
l
(
x
)
\dot{x}=f\left( x,u\left( x \right) \right) =f_{\mathrm{cl}}\left( x \right)
x˙=f(x,u(x))=fcl?(x))
x
˙
=
f
(
x
)
,
x
∈
R
n
\dot{x}=f\left( x \right) ,x\in \mathbb{R} ^n
x˙=f(x),x∈Rn , with I.C.
x
(
0
)
=
x
0
x\left( 0 \right) =x_0
x(0)=x0?
f
(
x
)
f\left( x \right)
f(x) - vector field
The equilibrium
x
=
0
x=0
x=0 is called stable(stay close to equilibrium) in the sense of Lyapunov , if
?
?
δ
\epsilon -\delta
??δ argument ——
?
?
>
0
,
?
δ
>
0
,
s
.
t
.
∥
x
(
0
)
∥
?
δ
?
∥
x
(
t
)
∥
?
?
,
?
t
?
0
\forall \epsilon >0,\exists \delta >0,s.t.\left\| x\left( 0 \right) \right\| \leqslant \delta \Rightarrow \left\| x\left( t \right) \right\| \leqslant \epsilon ,\forall t\geqslant 0
??>0,?δ>0,s.t.∥x(0)∥?δ?∥x(t)∥??,?t?0
Objective: For any
?
>
0
\epsilon >0
?>0 , ensure
∥
x
(
t
)
∥
?
?
\left\| x\left( t \right) \right\| \leqslant \epsilon
∥x(t)∥?? for all
t
t
t
our choice : selecting initial state
x
(
0
)
x\left( 0 \right)
x(0)
stability : objective can be ensure by choosing I.C. sufficiently small
asymptotically stable (stay close + convergence) if it is stable and
δ
\delta
δ can be chosen so that
∥
x
(
0
)
∥
?
δ
?
∥
x
(
t
)
∥
→
0
\left\| x\left( 0 \right) \right\| \leqslant \delta \Rightarrow \left\| x\left( t \right) \right\| \rightarrow 0
∥x(0)∥?δ?∥x(t)∥→0 as
t
→
∞
t\rightarrow \infty
t→∞ (convergence)
exponentially stable if there exist positive constants
δ
,
λ
,
c
\delta ,\lambda ,c
δ,λ,c such that
∥
x
(
t
)
∥
?
c
∥
x
(
0
)
∥
e
?
λ
t
,
?
∥
x
(
0
)
∥
?
δ
\left\| x\left( t \right) \right\| \leqslant c\left\| x\left( 0 \right) \right\| e^{-\lambda t},\forall \left\| x\left( 0 \right) \right\| \leqslant \delta
∥x(t)∥?c∥x(0)∥e?λt,?∥x(0)∥?δ
globallt asymptomtotically / exponentially stable (G.A.S / G.E.S) if the above conditions holds for all δ > 0 \delta >0 δ>0
Region of Attraction - 吸引域 :
R
A
?
{
x
∈
R
n
:
w
h
e
v
e
r
??
x
(
0
)
=
x
,
t
h
e
n
??
x
(
t
)
→
0
}
R_A\triangleq \left\{ x\in \mathbb{R} ^n:whever\,\,x\left( 0 \right) =x,then\,\,x\left( t \right) \rightarrow 0 \right\}
RA??{x∈Rn:wheverx(0)=x,thenx(t)→0}
Globaly asymptotically stable
R
A
?
R
n
R_A\triangleq \mathbb{R} ^n
RA??Rn
Assume that 0 ∈ D ? R n 0\in D\subseteq \mathbb{R} ^n 0∈D?Rn
[Lyapunov Theorem] : Let
D
?
R
n
D\subseteq \mathbb{R} ^n
D?Rn be a set containing an open neighborhood of the origin. If there exists a
C
1
\mathcal{C} ^1
C1 (continuous differentiable) function
V
:
D
→
R
V:D\rightarrow \mathbb{R}
V:D→R (observable condition - e.g.
V
(
x
)
=
x
1
2
,
x
=
[
x
1
x
2
]
=
[
0
100
]
??
,
V
(
x
)
=
0
i
s
??
P
S
D
V\left( x \right) ={x_1}^2,x=\left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] =\left[ \begin{array}{c} 0\\ 100\\ \end{array} \right] \,\,,V\left( x \right) =0 is\,\,PSD
V(x)=x1?2,x=[x1?x2??]=[0100?],V(x)=0isPSD) such that
{
V
??
i
s
??
P
D
V
˙
(
x
)
?
?
V
(
x
)
T
f
(
x
)
??
i
s
??
N
S
D
\begin{cases} V\,\,is\,\,PD\\ \dot{V}\left( x \right) \triangleq \nabla V\left( x \right) ^{\mathrm{T}}f\left( x \right) \,\,is\,\,NSD\\ \end{cases}
{VisPDV˙(x)??V(x)Tf(x)isNSD?
the value of
V
V
V along sys state trajectory nonincreasing
V
˙
(
x
(
t
)
)
=
(
?
V
?
x
)
T
?
x
?
t
=
?
V
(
x
)
T
f
(
x
)
,
?
V
(
x
)
[
?
V
?
x
1
?
V
?
x
2
?
?
V
?
x
n
]
\dot{V}\left( x\left( t \right) \right) =\left( \frac{\partial V}{\partial x} \right) ^{\mathrm{T}}\frac{\partial x}{\partial t}=\nabla V\left( x \right) ^{\mathrm{T}}f\left( x \right) ,\nabla V\left( x \right) \left[ \begin{array}{c} \frac{\partial V}{\partial x_1}\\ \frac{\partial V}{\partial x_2}\\ \vdots\\ \frac{\partial V}{\partial x_{\mathrm{n}}}\\ \end{array} \right]
V˙(x(t))=(?x?V?)T?t?x?=?V(x)Tf(x),?V(x)
??x1??V??x2??V???xn??V??
? ,
?
V
(
x
)
T
f
(
x
)
?
L
f
[
V
]
\nabla V\left( x \right) ^{\mathrm{T}}f\left( x \right) \triangleq Lf\left[ V \right]
?V(x)Tf(x)?Lf[V] Lie derivative of
V
(
?
)
V\left( \cdot \right)
V(?) with vetor field
f
f
f
then the origin is stable. If in addition ,
V
˙
(
x
)
?
?
V
(
x
)
T
f
(
x
)
??
i
s
??
N
D
\dot{V}\left( x \right) \triangleq \nabla V\left( x \right) ^{\mathrm{T}}f\left( x \right) \,\,is\,\,ND
V˙(x)??V(x)Tf(x)isND
then the origin is asymptotically stable —— Value of
V
V
V along sys state trajectory is decreasing
Remarks:
A PD C 1 \mathcal{C} ^1 C1 function satisfying above equation will be called a Lyapunov function (1+2 or 1+3)
Under condition 3 , if V V V is also radially unbounded —— globally asympotically stable (G.A.S)
Main idea : 1+2 —— stability
Fact : suppose
V
V
V function satisfies 1+2 , then the sub level set
Ω
b
(
V
)
?
{
x
∈
R
n
:
V
(
x
)
?
b
}
\varOmega _{\mathrm{b}}\left( V \right) \triangleq \left\{ x\in \mathbb{R} ^n:V\left( x \right) \leqslant b \right\}
Ωb?(V)?{x∈Rn:V(x)?b} is forward invariant
Proof Fact : if
x
(
0
)
∈
Ω
b
x\left( 0 \right) \in \varOmega _{\mathrm{b}}
x(0)∈Ωb? fro some
b
?
0
b\geqslant 0
b?0 , we have
V
(
x
(
t
)
)
?
V
(
x
(
0
)
)
?
b
V\left( x\left( t \right) \right) \leqslant V\left( x\left( 0 \right) \right) \leqslant b
V(x(t))?V(x(0))?b
?
x
(
t
)
∈
Ω
b
\Rightarrow x\left( t \right) \in \varOmega _{\mathrm{b}}
?x(t)∈Ωb?
Proof of stability : Given
ε
>
0
\varepsilon >0
ε>0 , goal is to find
δ
>
0
\delta >0
δ>0, such that
∥
x
(
0
)
∥
?
δ
?
∥
x
(
t
)
∥
?
ε
\left\| x\left( 0 \right) \right\| \leqslant \delta \Rightarrow \left\| x\left( t \right) \right\| \leqslant \varepsilon
∥x(0)∥?δ?∥x(t)∥?ε
Sketch of proof of Lyapunov Stability theorem:
Define sublevel set Ω b = { x ∈ R n : V ( x ) ? b } \varOmega _{\mathrm{b}}=\left\{ x\in \mathbb{R} ^n:V\left( x \right) \leqslant b \right\} Ωb?={x∈Rn:V(x)?b}. Condition 2 implies V ( x ( t ) ) V\left( x\left( t \right) \right) V(x(t)) nonincreasing along system trajectory ? \Rightarrow ? if x 0 ∈ Ω b x_0\in \varOmega _{\mathrm{b}} x0?∈Ωb? , then x ( t ) ∈ Ω b x\left( t \right) \in \varOmega _{\mathrm{b}} x(t)∈Ωb?, ? t \forall t ?t
Given arbitrary ε > 0 \varepsilon >0 ε>0 , if we can find δ , b \delta ,b δ,b such that B ( 0 , δ ) ? Ω b ? B ( 0 , ε ) B\left( 0,\delta \right) \subseteq \varOmega _{\mathrm{b}}\subseteq B\left( 0,\varepsilon \right) B(0,δ)?Ωb??B(0,ε). Then the Lyapunov stability conditions are satisfied. Below is to show how we can find such b b b and δ \delta δ
V V V is continuous ? \Rightarrow ? m = min ? ∥ x ∥ = ε V ( x ) m=\min _{\left\| x \right\| =\varepsilon}V\left( x \right) m=min∥x∥=ε?V(x) exists (due to Weierstrass theorem). In addition, V V V is PD ? \Rightarrow ? m > 0 m>0 m>0. Therefore, if we choose b ∈ ( 0 , m ) b\in \left( 0,m \right) b∈(0,m) , then Ω b ? B ( 0 , ε ) \varOmega _{\mathrm{b}}\subseteq B\left( 0,\varepsilon \right) Ωb??B(0,ε)
V ( x ) V\left( x \right) V(x) is continuous at origin ? \Rightarrow ? for any b > 0 b>0 b>0 , there exists δ > 0 \delta >0 δ>0 such that ∣ V ( x ) ? V ( 0 ) ∣ = V ( x ) < b , ? x ∈ B ( 0 , δ ) \left| V\left( x \right) -V\left( 0 \right) \right|=V\left( x \right) <b,\forall x\in B\left( 0,\delta \right) ∣V(x)?V(0)∣=V(x)<b,?x∈B(0,δ) . This implies that B ( 0 , δ ) ? Ω b B\left( 0,\delta \right) \subseteq \varOmega _{\mathrm{b}} B(0,δ)?Ωb?
We know V ( x ( t ) ) V\left( x\left( t \right) \right) V(x(t)) decreases monotonically as t → ∞ t\rightarrow \infty t→∞ and V ( x ( t ) ) ? 0 V\left( x\left( t \right) \right) \geqslant 0 V(x(t))?0, ? t \forall t ?t. Therefore, c = lim ? t → ∞ V ( x ( t ) ) c=\lim _{t\rightarrow \infty}V\left( x\left( t \right) \right) c=limt→∞?V(x(t)) exists . So it suffices to show c = 0 c=0 c=0. Let us use a contradiction argument.
Suppose c ≠ 0 c\ne 0 c=0. Then c > 0 c>0 c>0. Therefore, x ( t ) ? Ω c = { x ∈ R n : V ( x ) ? c } x\left( t \right) \notin \varOmega _{\mathrm{c}}=\left\{ x\in \mathbb{R} ^n:V\left( x \right) \leqslant c \right\} x(t)∈/Ωc?={x∈Rn:V(x)?c} , ? t \forall t ?t . We can choose β > 0 \beta >0 β>0 such that B ( 0 , β ) ? Ω c B\left( 0,\beta \right) \subseteq \varOmega _{\mathrm{c}} B(0,β)?Ωc? (due to continuity of V V V at 0 0 0)
Now let a = ? max ? β ? ∥ x ∥ ? ε V ˙ ( x ) a=-\max _{\beta \leqslant \left\| x \right\| \leqslant \varepsilon}\dot{V}\left( x \right) a=?maxβ?∥x∥?ε?V˙(x). Since V V V is ND, then a > 0 a>0 a>0
V ( x ( t ) ) = V ( x ( 0 ) ) + ∫ 0 t V ˙ ( x ( s ) ) d s ? V ( x ( 0 ) ) ? a ? t < 0 V\left( x\left( t \right) \right) =V\left( x\left( 0 \right) \right) +\int_0^t{\dot{V}\left( x\left( s \right) \right)}\mathrm{d}s\leqslant V\left( x\left( 0 \right) \right) -a\cdot t<0 V(x(t))=V(x(0))+∫0t?V˙(x(s))ds?V(x(0))?a?t<0 for sufficiently large t t t. ? \Rightarrow ? contradiction !
Definition 3 (Exponential Lyapunov Function) —— Important for application
V : D → R V:D\rightarrow \mathbb{R} V:D→R is called anExponential Lyapunov Function (ELF)
on D ? R n D\subset \mathbb{R} ^n D?Rn if ? k 1 , k 2 , k 3 , α > 0 \exists k_1,k_2,k_3,\alpha >0 ?k1?,k2?,k3?,α>0 such that
{ k 1 ∥ x ∥ α ? V ( x ) ? k 2 ∥ x ∥ α L f V ( x ) ? ? k 3 V ( x ) \begin{cases} k_1\left\| x \right\| ^{\alpha}\leqslant V\left( x \right) \leqslant k_2\left\| x \right\| ^{\alpha}\\ \mathcal{L} _{\mathrm{f}}V\left( x \right) \leqslant -k_3V\left( x \right)\\ \end{cases} {k1?∥x∥α?V(x)?k2?∥x∥αLf?V(x)??k3?V(x)?
Lyapunov stability
?
C
1
\exists \mathcal{C} ^1
?C1 func
V
V
V
V
V
V is PD - deserable ;
V
˙
\dot{V}
V˙ is ND/NSD
k
1
∥
x
∥
α
?
V
(
x
)
?
k
2
∥
x
∥
α
k_1\left\| x \right\| ^{\alpha}\leqslant V\left( x \right) \leqslant k_2\left\| x \right\| ^{\alpha}
k1?∥x∥α?V(x)?k2?∥x∥α
?
V
\Rightarrow V
?V is PD (radially unbounded)
L
f
V
(
x
)
?
?
k
3
V
(
x
)
\mathcal{L} _{\mathrm{f}}V\left( x \right) \leqslant -k_3V\left( x \right)
Lf?V(x)??k3?V(x)
?
V
˙
\Rightarrow \dot{V}
?V˙ is ND,
V
˙
?
?
k
3
V
\dot{V}\leqslant -k_3V
V˙??k3?V
Droof sketch :
recall :
z
∈
R
1
,
z
˙
=
?
k
3
z
?
z
(
t
)
=
e
?
k
3
t
z
(
0
)
z\in \mathbb{R} ^1,\dot{z}=-k_3z\Rightarrow z\left( t \right) =e^{-k_3t}z\left( 0 \right)
z∈R1,z˙=?k3?z?z(t)=e?k3?tz(0)
By comparison theorem :
V
˙
?
?
k
3
V
?
V
(
t
)
?
e
?
k
3
t
V
(
0
)
\dot{V}\leqslant -k_3V\Rightarrow V\left( t \right) \leqslant e^{-k_3t}V\left( 0 \right)
V˙??k3?V?V(t)?e?k3?tV(0)
?
∥
x
(
t
)
∥
α
?
1
k
1
V
(
x
(
t
)
)
?
1
k
1
e
?
k
3
t
V
(
x
(
0
)
)
?
k
2
k
1
e
?
k
3
t
∥
x
(
0
)
∥
α
?
∥
x
(
t
)
∥
α
?
c
e
?
β
t
∥
x
(
0
)
∥
α
\Rightarrow \left\| x\left( t \right) \right\| ^{\alpha}\leqslant \frac{1}{k_1}V\left( x\left( t \right) \right) \leqslant \frac{1}{k_1}e^{-k_3t}V\left( x\left( 0 \right) \right) \leqslant \frac{k_2}{k_1}e^{-k_3t}\left\| x\left( 0 \right) \right\| ^{\alpha}\Rightarrow \left\| x\left( t \right) \right\| ^{\alpha}\leqslant ce^{-\beta t}\left\| x\left( 0 \right) \right\| ^{\alpha}
?∥x(t)∥α?k1?1?V(x(t))?k1?1?e?k3?tV(x(0))?k1?k2??e?k3?t∥x(0)∥α?∥x(t)∥α?ce?βt∥x(0)∥α
Theorem 1 (ELF Theorem)
If system 2 has an ELF, then it is exponentially stable
? \Rightarrow ? system is asymptotically stable
In fact the system does not have any (global polynomial Lyapunov function.) But it is GAS with a Lyapunov function V ( x ) = ln ? ( 1 + x 1 2 ) + x 2 2 V\left( x \right) =\ln \left( 1+{x_1}^2 \right) +{x_2}^2 V(x)=ln(1+x1?2)+x2?2
Consider autonomous linear system : x ˙ = f ( x ) = A x \dot{x}=f\left( x \right) =Ax x˙=f(x)=Ax
? V \Rightarrow V ?V is LF if P P P is PD and A T P + P A A^{\mathrm{T}}P+PA ATP+PA is ND
Fact : for Linear System , quadratic form of LF , ai all we need to consider. —— A A A is asym stable if and only if ??
In proof of the above function , we assumed
P
P
P is symmetric so
P
T
A
=
P
A
P^{\mathrm{T}}A=PA
PTA=PA
e.g.
P
T
A
=
P
A
P^{\mathrm{T}}A=PA
PTA=PA ,
Q
=
[
1
1
?
1
1
]
,
g
(
x
)
=
x
T
Q
x
=
[
x
1
x
2
]
T
[
1
1
?
1
1
]
[
x
1
x
2
]
=
x
1
2
+
x
2
2
?
[
x
1
x
2
]
T
[
1
0
0
1
]
[
x
1
x
2
]
Q=\left[ \begin{matrix} 1& 1\\ -1& 1\\ \end{matrix} \right] , g\left( x \right) =x^{\mathrm{T}}Qx=\left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 1& 1\\ -1& 1\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] ={x_1}^2+{x_2}^2\Rightarrow \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 1& 0\\ 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} x_1\\ x_2\\ \end{array} \right]
Q=[1?1?11?],g(x)=xTQx=[x1?x2??]T[1?1?11?][x1?x2??]=x1?2+x2?2?[x1?x2??]T[10?01?][x1?x2??] ,
Q
^
=
1
2
Q
+
1
2
Q
T
\hat{Q}=\frac{1}{2}Q+\frac{1}{2}Q^{\mathrm{T}}
Q^?=21?Q+21?QT
Fact : A A A is asym stable if and only if
- ? P ? 0 \exists P\succ 0 ?P?0 , such that A T P + P A ? 0 A^{\mathrm{T}}P+PA\prec 0 ATP+PA?0
- equivalently , for any Q ? 0 , ? P Q\succ 0,\exists P Q?0,?P such that A T P + P A = ? Q A^{\mathrm{T}}P+PA=-Q ATP+PA=?Q (Lyapunov equation)
Theorem 1 (Stability Conditions for Linear System)
For an autonomous Linear system x ˙ = A x \dot{x}=Ax x˙=Ax. The following statements are equivalent.
- (Linear) System is (globally) asmptotically stable
- (Linear) System is (globally) exponentially stable
- R e ( λ i ) < 0 \mathrm{Re}\left( \lambda _{\mathrm{i}} \right) <0 Re(λi?)<0 for all eigenvalues λ i \lambda _{\mathrm{i}} λi? of A A A —— lie on open left half complex plane (OLHP)
- System has a quadratic Lyapunov function V ( x ) = x T P x V\left( x \right) =x^{\mathrm{T}}Px V(x)=xTPx
- For ant symmetric Q ? 0 Q\succ 0 Q?0 , there exists a symmetric P ? 0 P\succ 0 P?0 that solves the following Lyapunov equation :
A T P + P A = ? Q A^{\mathrm{T}}P+PA=-Q ATP+PA=?Q
Q ? 0 Q\succ 0 Q?0 is given , P P P is the variale to be solved , and V ( x ) = x T P x V\left( x \right) =x^{\mathrm{T}}Px V(x)=xTPx is Lyapunov function of the system
Converse Lyapunov Theorem for Asymptotic Stability
origin asymptotically stable ;
f
f
f is locallt Lipschitz on D with region of attration
R
A
R_A
RA?
?
V
??
s
.
t
.
\Rightarrow V\,\,s.t.
?Vs.t.
V
V
V is continuuos and PD on
R
A
R_A
RA? ;
L
f
V
L_{\mathrm{f}}V
Lf?V is ND on
R
A
R_A
RA? ;
V
(
x
)
→
∞
V\left( x \right) \rightarrow \infty
V(x)→∞ as
x
→
?
R
A
x\rightarrow \partial R_{\mathrm{A}}
x→?RA?
convex result that is not constructive
Converse Lyapunov Theorem for Exponential Stability
origin exponentially stable on
D
D
D ;
f
f
f is
C
1
\mathcal{C} ^1
C1
?
?
\Rightarrow \exists
?? an ELF
V
V
V on
D
D
D
For nonlinear sys , ? V ? \exists V\Rightarrow ?V? stability (sufficient condition)
Proofs are involved especially for the converse theorem for asymptotic stability
Important : proofs of converse theorems often assume the knowledge of system solution and hence are not constructive