官方 GitHub 给了非常详细的指导,按照步骤来即可
https://github.com/hku-mars/FAST_LIO
首先需要用 LI-Init 完成激光雷达与 IMU 的时空标定,然后填入 YAML 配置文件即可
common:
lid_topic: "/velodyne_points"
imu_topic: "/zedm/zed_node/imu/data_raw"
time_sync_en: true # ONLY turn on when external time synchronization is really not possible
time_offset_lidar_to_imu: 0.127214 # Time offset between lidar and IMU calibrated by other algorithms, e.g. LI-Init (can be found in README).
# This param will take effect no matter what time_sync_en is. So if the time offset is not known exactly, please set as 0.0
preprocess:
lidar_type: 2 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
scan_line: 16
scan_rate: 10 # only need to be set for velodyne, unit: Hz,
timestamp_unit: 2 # the unit of time/t field in the PointCloud2 rostopic: 0-second, 1-milisecond, 2-microsecond, 3-nanosecond.
blind: 2
mapping:
acc_cov: 0.1
gyr_cov: 0.1
b_acc_cov: 0.0001
b_gyr_cov: 0.0001
fov_degree: 180
det_range: 100.0
extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic,
extrinsic_T: [ -0.068703, -0.094532, 0.067275]
extrinsic_R: [ 0.999895, -0.007797, 0.012203,
0.007883, 0.999944, -0.007073,
-0.012147, 0.007168, 0.999901]
publish:
path_en: true
scan_publish_en: true # false: close all the point cloud output
dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
pcd_save:
pcd_save_en: true
interval: -1 # how many LiDAR frames saved in each pcd file;
# -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.
建图效果尚可