8.点云获取和数据处理(python)

发布时间:2023年12月22日

点云数据获取和处理的代码如下:

一、用DBSCAN聚类的方法处理点云数据

? ? ? ?通过设置点云坐标的最大聚类对点云坐标进行归类,再将相同类的坐标求均值(中心点坐标),这些均值坐标通过手眼标定的转换矩阵转换为二维的相机坐标,再和相机拍到的目标的中心点坐标拟合,找到与目标坐标最适合的点云坐标,从而获得目标物的距离。?相机和雷达的手眼标定代码本人已经写完,可以参考微博1.激光雷达与相机的融合标定(附python代码)_雷达坐标系转相机坐标系-CSDN博客?

? ? ?这里我们只是通过聚类获得了点云的均值坐标。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
from sensor_msgs.msg import PointCloud2
import sensor_msgs.point_cloud2 as pc2
from std_msgs.msg import Header
from visualization_msgs.msg import Marker, MarkerArray
from geometry_msgs.msg import Point

#import torch
import numpy as np
import sys
import time
print(sys.version)
#from recon_barriers_model import recon_barriers
#from pclpy import pcl
from queue import Queue

import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#%matplotlib

#聚类的数据处理
def cluster(points, radius=0.2):
    """
    points: pointcloud
    radius: max cluster range
    """
    items = []
    while len(points)>1:
        item = np.array([points[0]])
        base = points[0]
        points = np.delete(points, 0, 0)
        distance = (points[:,0]-base[0])**2+(points[:,1]-base[1])**2+(points[:,2]-base[2])**2
        infected_points = np.where(distance <= radius**2)
        item = np.append(item, points[infected_points], axis=0)
        border_points = points[infected_points]
        points = np.delete(points, infected_points, 0)
        while len(border_points) > 0:
            border_base = border_points[0]
            border_points = np.delete(border_points, 0, 0)
            border_distance = (points[:,0]-border_base[0])**2+(points[:,1]-border_base[1])**2
            border_infected_points = np.where(border_distance <= radius**2)
            item = np.append(item, points[border_infected_points], axis=0)
            border_points = points[border_infected_points]
            points = np.delete(points, border_infected_points, 0)
        items.append(item)
    return items


#点云的获取的部分数据的过滤
def recon_barriers(filename,msg_1s):

    pcl_msg = pc2.read_points(filename, skip_nans=False, field_names=(
        "x", "y", "z", "intensity","ring"))
    
    np_p_2 = np.array(list(pcl_msg), dtype=np.float32)
    print("===>",np_p_2.shape)
    
    ss=np.where([s[0]>2 and s[1]<3 and s[-1]>-3 and s[2]>-0.5 for s in np_p_2])
    #print(len(ss[0]))
    #print(ss[0])
    hh=np_p_2[ss]
    print(hh.shape)
    return hh

def velo_callback(msg):
    pcl_msg = pc2.read_points(msg, skip_nans=False, field_names=(
       "x", "y", "z", "intensity","ring"))
    print(type(pcl_msg))
    global  max_marker_size_,frequence
    frequence=1
    if frequence % 2 == 0:
        q.put(msg)
        msg_1s = q.get()
    else:
        q.put(msg)
        msg_1s = q.get()
        ans = recon_barriers(msg,msg_1s)
        
        
        item=cluster(ans, radius=0.2)
        m_item=[]
        for items in item:
            print("..............",items.shape)
            #x,y,z=int(items[:,:1].sum().mean())
                                                     
   x,y,z,r=items[:,:1].mean(),items[:,1:2].mean(),items[:,2:3].mean(),items[:,3:4].mean()
            m_item.append([x,y,z])
        
        print("=====+++++>>>>",len(item))
        print(len(item[0]))
        print(m_item)
        
        fig = plt.figure()
        ax = Axes3D(fig)
        fig = plt.figure()
        ax = Axes3D(fig)
        #ax.scatter(item[:,0], item[:,1], item[:,2], s=1)
        #fig.show()


if __name__ == '__main__':
    #  code added for using ROS
    global  max_marker_size_,frequence
    q = Queue()
    q.put(None)
    rospy.init_node('lidar_node')
    sub_ = rospy.Subscriber("livox/lidar", PointCloud2,
                            velo_callback, queue_size=100)
    pub_arr_bbox = rospy.Publisher(
        "visualization_marker", MarkerArray, queue_size=100)
    print("ros_node has started!")
    rospy.spin()




二、通过雷达的不同颜色对点云进行处理

? ? ? 将相同颜色的点云坐标归为一类,并求每个类的坐标的平均值(中心点坐标)。当环境比较单一,雷达反射的点云颜色类型较少时可以用这种方法。点云的返回坐标是(x,y,z,r),其中r是颜色,所以我们可以将颜色的数据切取后set,set是将重复的元素去掉,再遍历set对返回的点云np.where即可。

文章来源:https://blog.csdn.net/weixin_71719718/article/details/135135478
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。