岛屿系列题目的核心考点就是用 DFS/BFS 算法遍历二维数组。
本文主要来讲解如何用 DFS 算法来秒杀岛屿系列题目,不过用 BFS 算法的核心思路是完全一样的,无非就是把 DFS 改写成 BFS 而已。
那么如何在二维矩阵中使用 DFS 搜索呢?如果你把二维矩阵中的每一个位置看做一个节点,这个节点的上下左右四个位置就是相邻节点,那么整个矩阵就可以抽象成一幅网状的「图」结构。
根据二叉树的遍历框架写出岛屿数量的框架:
// 二叉树遍历框架
void traverse(TreeNode root) {
traverse(root.left);
traverse(root.right);
}
// 二维矩阵遍历框架
void dfs(int[][] grid, int i, int j, boolean[][] visited) {
int m = grid.length, n = grid[0].length;
if (i < 0 || j < 0 || i >= m || j >= n) {
// 超出索引边界
return;
}
if (visited[i][j]) {
// 已遍历过 (i, j)
return;
}
// 进入节点 (i, j)
visited[i][j] = true;
dfs(grid, i - 1, j, visited); // 上
dfs(grid, i + 1, j, visited); // 下
dfs(grid, i, j - 1, visited); // 左
dfs(grid, i, j + 1, visited); // 右
}
因为二维矩阵本质上是一幅「图」,所以遍历的过程中需要一个 `visited` 布尔数组防止走回头路,如果你能理解上面这段代码,那么搞定所有岛屿系列题目都很简单。
这里额外说一个处理二维数组的常用小技巧,有时会使用「方向数组」处理上下左右的遍历
// 方向数组,分别代表上、下、左、右
int[][] dirs = new int[][]{{-1,0}, {1,0}, {0,-1}, {0,1}};
void dfs(int[][] grid, int i, int j, boolean[][] visited) {
int m = grid.length, n = grid[0].length;
if (i < 0 || j < 0 || i >= m || j >= n) {
// 超出索引边界
return;
}
if (visited[i][j]) {
// 已遍历过 (i, j)
return;
}
// 进入节点 (i, j)
visited[i][j] = true;
// 递归遍历上下左右的节点
for (int[] d : dirs) {
int next_i = i + d[0];
int next_j = j + d[1];
dfs(grid, next_i, next_j, visited);
}
// 离开节点 (i, j)
}
这种写法无非就是用 for 循环处理上下左右的遍历罢了,你可以按照个人喜好选择写法。
思路很简单,关键在于如何寻找并标记「岛屿」,这就要 DFS 算法发挥作用了,我们直接看解法代码:
class Solution {
// 主函数,计算岛屿数量
int numIslands(char[][] grid) {
int res = 0;
int m = grid.length, n = grid[0].length;
// 遍历 grid
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
// 每发现一个岛屿,岛屿数量加一
res++;
// 然后使用 DFS 将岛屿淹了
dfs(grid, i, j);
}
}
}
return res;
}
// 从 (i, j) 开始,将与之相邻的陆地都变成海水
void dfs(char[][] grid, int i, int j) {
int m = grid.length, n = grid[0].length;
if (i < 0 || j < 0 || i >= m || j >= n) {
// 超出索引边界
return;
}
if (grid[i][j] == '0') {
// 已经是海水了
return;
}
// 将 (i, j) 变成海水
grid[i][j] = '0';
// 淹没上下左右的陆地
dfs(grid, i + 1, j);
dfs(grid, i, j + 1);
dfs(grid, i - 1, j);
dfs(grid, i, j - 1);
}
}
为什么每次遇到岛屿,都要用 DFS 算法把岛屿「淹了」呢?
主要是为了省事,避免维护?`visited`?数组。
因为?`dfs`?函数遍历到值为?`0`?的位置会直接返回,所以只要把经过的位置都设置为?`0`,就可以起到不走回头路的作用。
1254. 统计封闭岛屿的数目 - 力扣(LeetCode)
上一题说二维矩阵四周可以认为也是被海水包围的,所以靠边的陆地也算作岛屿。
1、用?`0`?表示陆地,用?`1`?表示海水。
2、让你计算「封闭岛屿」的数目。所谓「封闭岛屿」就是上下左右全部被?`1`?包围的?`0`,也就是说靠边的陆地不算作「封闭岛屿」。
算法返回 2,只有图中灰色部分的?`0`?是四周全都被海水包围着的「封闭岛屿」。
那么如何判断「封闭岛屿」呢?其实很简单,把上一题中那些靠边的岛屿排除掉,剩下的不就是「封闭岛屿」了吗?
有了这个思路,就可以直接看代码了,注意这题规定?`0`?表示陆地,用?`1`?表示海水:
?
class Solution {
// 主函数:计算封闭岛屿的数量
int closedIsland(int[][] grid) {
int m = grid.length, n = grid[0].length;
for (int j = 0; j < n; j++) {
// 把靠上边的岛屿淹掉
dfs(grid, 0, j);
// 把靠下边的岛屿淹掉
dfs(grid, m - 1, j);
}
for (int i = 0; i < m; i++) {
// 把靠左边的岛屿淹掉
dfs(grid, i, 0);
// 把靠右边的岛屿淹掉
dfs(grid, i, n - 1);
}
// 遍历 grid,剩下的岛屿都是封闭岛屿
int res = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 0) {
res++;
dfs(grid, i, j);
}
}
}
return res;
}
// 从 (i, j) 开始,将与之相邻的陆地都变成海水
void dfs(int[][] grid, int i, int j) {
int m = grid.length, n = grid[0].length;
if (i < 0 || j < 0 || i >= m || j >= n) {
return;
}
if (grid[i][j] == 1) {
// 已经是海水了
return;
}
// 将 (i, j) 变成海水
grid[i][j] = 1;
// 淹没上下左右的陆地
dfs(grid, i + 1, j);
dfs(grid, i, j + 1);
dfs(grid, i - 1, j);
dfs(grid, i, j - 1);
}
}