狄拉克矩阵是狄拉克在构建狄拉克方程时引入的矩阵,一般用 γ μ \gamma^\mu γμ来表示,其展开式为
γ μ = ( γ 0 , γ ? ) = ( β , α ? ) = ( γ 0 , γ 1 , γ 2 , γ 3 ) \gamma^\mu=(\gamma^0, \vec\gamma)=(\beta, \vec\alpha)=(\gamma^0,\gamma^1,\gamma^2,\gamma^3) γμ=(γ0,γ?)=(β,α)=(γ0,γ1,γ2,γ3)
相应地狄拉克方程表示为
( i γ μ ? μ ? m ) ψ = 0 (i\gamma^\mu\partial^\mu-m)\psi=0 (iγμ?μ?m)ψ=0
其展开形式为
i ? ? ψ ? t = ( ? c i α ? ? ? + β m c 2 ) ψ i\hbar\frac{\partial\psi}{\partial t}=(\frac{\hbar c}{i}\vec\alpha\cdot\nabla+\beta mc^2)\psi i??t?ψ?=(i?c?α??+βmc2)ψ
此外,还定义了 γ 5 = i γ 0 γ 1 γ 2 γ 3 \gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3 γ5=iγ0γ1γ2γ3。
在sympy中提供了mgamma函数,用以生成狄拉克矩阵
from sympy import print_latex
from sympy.physics.matrices import mgamma
for i in range(4):
print_latex(mgamma(i))
由此得到狄拉克矩阵的具体形式如下
γ 0 = [ 1 0 0 0 0 1 0 0 0 0 ? 1 0 0 0 0 ? 1 ] γ 1 = [ 0 0 0 1 0 0 1 0 0 ? 1 0 0 ? 1 0 0 0 ] γ 2 = [ 0 0 0 ? i 0 0 i 0 0 i 0 0 ? i 0 0 0 ] γ 3 = [ 0 0 1 0 0 0 0 ? 1 ? 1 0 0 0 0 1 0 0 ] \gamma^0=\left[\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & -1 & 0\\0 & 0 & 0 & -1\end{matrix}\right]\\ \gamma^1=\left[\begin{matrix}0 & 0 & 0 & 1\\0 & 0 & 1 & 0\\0 & -1 & 0 & 0\\-1 & 0 & 0 & 0\end{matrix}\right]\\ \gamma^2=\left[\begin{matrix}0 & 0 & 0 & - i\\0 & 0 & i & 0\\0 & i & 0 & 0\\- i & 0 & 0 & 0\end{matrix}\right]\\ \gamma^3=\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & -1\\-1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right] γ0= ?1000?0100?00?10?000?1? ?γ1= ?000?1?00?10?0100?1000? ?γ2= ?000?i?00i0?0i00??i000? ?γ3= ?00?10?0001?1000?0?100? ?
print_latex(mgamma(5))
\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right]
即
γ 5 = [ 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 ] \gamma^5=\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right] γ5= ?0010?0001?1000?0100? ?