- 1.互斥事件(互不相容)与对立事件:A 与 B 的交集为空集,A 和 B 不可能同时发生,区别于对立事件(在互斥事件的基础上,A 和 B 的和为全集)
- 对于互斥事件有 P(A + B + C ··· + Z) = P(A) + P(B) + P( C) + ··· + P(Z)
- 对于一般的不是互斥,
P(A+B) = P(A) + P(B ) - P(AB)这里不是P(A)*P(B)
,三个变量
P(A+B+C) = P(A) + P(B) + P? -P(AB) -P(AC) -P(BC) +P(ABC)- 古典概型,条件概率,三个重要的公式:乘法公式,全概率公式(化整为零),贝叶斯公式(利用先验概率求后验概率)
- 事件的独立性:P(AB) = P(A)P(B) ,三个事件的独立性要有四个式子成立------> n 各事件相互独立,则任意的2到n-1 的事件都相互独立,替换成对立事件也是成立的
- P(AB) = P(A) - P(AB非) 这个式子通过包含关系直接推出
为什么分母不使用12*11*10 ,分析,使用这个的话要注意 ,其实这个是A(3,10),那么就是讲究顺序的了,由于筛选是最终的结果,是不讲究顺序的,只能用C(3,10)
- 将三个小球放进4各杯子,问杯中的最大小球个数分别为1,2,3的概率
站在小球的角度,选择杯子
- 对于1:那么就是432 / 444
- 对于3 :就是C(1,4) / 444
- 对于2: 就是1 - P(1) - P(3)
可能一开始对于 求P(A2) 没有什么思路,搞不清楚应该怎么算,这时可以考虑用全概率公式
- 注意区分离散型随机变量:二项分布,(0-1)分布,泊松分布,注意对它们分布列以及分布函数的求解(端点值?)
- 连续随机变量:均匀分布,指数分布,正态分布
- 指数分布是没有记忆性的P{X>s+t|X>s} = P{X>t}
- 二项分布的趋近为(np)泊松分布和正态分布
- 正态分布在u= 0 ,方差为1 时称为标准的正态分布
注意离散型随机变量的分布律与分布函数的关系