? SQL语句的优化是将性能低下的SQL语句转换成目的相同但是性能优异的SQL语句。
根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
尽量使用覆盖索引。
多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);
如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)。
当你要执行多条插入语句时,如
insert into test values(1,'a');
insert into test values(2,'b');
insert into test values(3,'c');
......
Insert into test values(1,'a'),(2,'b'),(3,'c').....;
start transaction;
insert into test values(1,'a'),(2,'b'),(3,'c');
insert into test values(4,'d'),(5,'e'),(6,'f');
commit;
主键顺序插入,性能要高于乱序插入。
主键乱序插入 : 3 532 33 23 54 56 21 14 34
主键顺序插入 : 1 2 3 4 5 7 8 9 10 24 67 87
步骤
创建表结构
设置参数
-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
load加载数据
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile 'sql文件地址' into table 表名
fields terminated by ',' lines terminated by '\n' ;
MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
优化思路:
count用 法 | 含义 |
---|---|
count(主 键) | InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。 服务层拿到主键后,直接按行进行累加(主键不可能为null) |
count(字 段) | 没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出 来,返回给服务层,服务层判断是否为null,不为null,计数累加。 有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返 回给服务层,直接按行进行累加。 |
count(数 字) | InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1” 进去,直接按行进行累加。 |
count(*) | InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接 按行进行累加。 |
按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*),所以尽 量使用 count(*)。
我们主要需要注意一下update语句执行时的注意事项。
update course set name = 'javaEE' where id = 1 ;
当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。
但是当我们在执行如下SQL时。
update course set name = 'SpringBoot' where name = 'PHP' ;
当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能 大大降低。
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁 升级为表锁 。