贪心算法,又称贪婪算法,是算法设计中的一种思想
其期待每一个阶段都是局部最优的选择,从而达到全局最优,但是结果并不一定是最优的
举个零钱兑换的例子,如果你有1元、2元、5元的钱币数张,用于兑换一定的金额,但是要求兑换的钱币张数最少
如果现在你要兑换11元,按照贪心算法的思想,先选择面额最大的5元钱币进行兑换,那么就得到11 = 5 + 5 + 1 的选择,这种情况是最优的
但是如果你手上钱币的面额为1、3、4,想要兑换6元,按照贪心算法的思路,我们会 6 = 4 + 1 + 1这样选择,这种情况结果就不是最优的选择
从上面例子可以看到,贪心算法存在一些弊端,使用到贪心算法的场景,都会存在一个特性:
一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法
至于是否选择贪心算法,主要看是否有如下两大特性:
回溯算法,也是算法设计中的一种思想,是一种渐进式寻找并构建问题解决方式的策略
回溯算法会先从一个可能的工作开始解决问题,如果不行,就回溯并选择另一个动作,知道将问题解决
使用回溯算法的问题,有如下特性:
常见的伪代码如下:
result = []
function backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 of 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
重点解决三个问题:
例如经典使用回溯算法为解决全排列的问题,如下:
一个不含重复数字的数组 nums
,我们要返回其所有可能的全排列,解决这个问题的思路是:
用代码表示则如下:
var permute = function(nums) {
const res = [], path = [];
backtracking(nums, nums.length, []);
return res;
function backtracking(n, k, used) {
if(path.length === k) {
res.push(Array.from(path));
return;
}
for (let i = 0; i < k; i++ ) {
if(used[i]) continue;
path.push(n[i]);
used[i] = true; // 同支
backtracking(n, k, used);
path.pop();
used[i] = false;
}
}
};
前面也初步了解到分而治之、动态规划,现在再了解到贪心算法、回溯算法
其中关于分而治之、动态规划、贪心策略三者的求解思路如下:
其中三者对应的经典问题如下图:
更多资源==> GitHub