模型论文为Pre-training with Extracted Gap-sentences for Abstractive Summarization,简称为PEGASUS。面向的情况主要是因为目前预训练语言任务主要为MLM和NSP任务,即为掩码预测任务和下一句预测任务,没有面向生成式文本摘要的预训练任务。因此PEGASUS提出在预训练阶段的时候,将重要的句子作为MASK1,掩盖后,通过encoder-decoder的结构运用MASK1覆盖后的句子预测MASK1的句子,在一定程度上模拟摘要生成。
PEGASUS假设前提为在预训练过程中,约接近下游任务的预训练任务可以获取更好的下游任务性能。
PEGASUS模型的预训练任务主要有两个,分别为gap句子生成和掩码预测任务。Gap句子生成主要模拟抽取式摘要文本生成。
GSS(Gap Sentence Generation)
MLM(Mask Language Model)
前提为预训练目标与下游任务约接近,finetune效果会更好。通过运用span mask的思想,将整个句子运用MSAK1遮盖预测,除此之外,将MASK1拼接为起来,形成一个伪摘要。Gap sentence ration(GSR)用于描述MASK1在文档中的总比例。
但是选择不同的句子会有不一样的结果,因此提出了下列集中选择句子的方式。定义n个句子文档集 D = x i n D = {x_i}n D=xi?n,n为句子个数, x i x_i xi?为第i个句子。D为文档。
在计算ROUGE1-F1的时候存在Uniq和Orig,具体差异如下图所示。
Tip:Rouge-N实际上是将模型生成的结果和标准结果按N-gram拆分后,计算召回率。比如有2个句子(一般模型生成的成为hypothesis,简写hyp;标准结果称为reference,简写为ref)
R o u g e ? N = ∑ S ∈ R e f e r e n c e S u n m a r i e s C o u n t m a t c h ( g r a m n ) ∑ S ∈ R e f e r e n c e S u m a r i e s ∑ g r a m n ∈ S C o u n t ( g r a m n ) Rouge{-}N=\frac{\sum_{S\in ReferenceSunmaries}Count_{match}(gram_n)}{\sum_{S\in ReferenceSumaries}\sum_{gram_n\in S}Count(gram_n)} Rouge?N=∑S∈ReferenceSumaries?∑gramn?∈S?Count(gramn?)∑S∈ReferenceSunmaries?Countmatch?(gramn?)?
最终得到一共有四种,结合之前的Random以及Lead,最终有Ind-Uniq,Ind-Orig,Seq-Uniq,Seq-Orig,Random,Lead共六种选择。
最终确定了将文档的SGR(选取30%)的句子作为Gap sentence句子,而且在选择MASK1的时候,运用Ind-Orig对方式,结果最好。
在文中共有三种方法。
只用MLM的效果最差,但是在100K-200K的参数中,用MLM+GSG效果较好,但是在200K之后,运用MLM效果反而下降,因此在训练大规模参数PEGASUS-large中只运用了GSG,在PERASUS-base中只运用了GSG+MLM。
此在训练大规模参数PEGASUS-large中只运用了GSG,在PERASUS-base中只运用了GSG+MLM。
PEGASUS模型:一个专为摘要提取定制的模型
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization