☆* o(≧▽≦)o *☆嗨~我是小奥🍹
📄📄📄个人博客:小奥的博客
📄📄📄CSDN:个人CSDN
📙📙📙Github:传送门
📅📅📅面经分享(牛客主页):传送门
🍹文章作者技术和水平有限,如果文中出现错误,希望大家多多指正!
📜 如果觉得内容还不错,欢迎点赞收藏关注哟! ??
十大排序算法指的是在计算机科学中被广泛使用,效率较高且实现简单的十个排序算法。下面是这十种排序算法的简要介绍:
(1)冒泡排序(Bubble Sort):交换相邻元素,最大或最小的元素经过n-1次比较后,就会排在数组的最后一位。
(2)选择排序(Selection Sort):每次寻找未排序序列中的最小值,并将其放在已排序序列的末尾。
(3)插入排序(Insertion Sort):对于未排序序列中的每一个元素,将其插入到已排序序列中的合适位置。
(4)希尔排序(Shell Sort):采用分组策略,先将待排序序列拆分为n/2个子序列,进行插入排序,然后逐渐缩小子序列的长度,直到子序列长度为1,即完成排序。
(5)归并排序(Merge Sort):将待排序序列不断二分,再将两个有序的子序列合并为一个有序序列,重复上述步骤,直到整个序列有序。
(6)快速排序(Quick Sort):选择一个基准元素,将序列中小于它的元素放在它的左边,大于它的元素放在右边,然后递归地对左右子序列进行快速排序。
(7)堆排序(Heap Sort):将待排序序列构建成一个堆,然后不断从堆顶取出最大值,并调整堆,直到取完所有元素。
(8)计数排序(Counting Sort):统计序列中每个元素出现的次数,然后根据统计信息对序列进行重排。
(9)桶排序(Bucket Sort):将整个区间划分为若干个桶,然后将元素按照大小分配到相应的桶中,在桶内使用其他的排序算法(如插入排序)进行排序。
(10)基数排序(Radix Sort):将待排序序列拆分为多个关键字,按照每个关键字进行排序,最终得到有序序列。
以上十种排序算法都有其独特的优势和适用场景,选择合适的排序算法可以提高程序的效率。
// 冒泡排序
public static void bubblingSort(int[] nums) {
int n = nums.length;
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
if(nums[i] > nums[j]) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
}
}
// 双向冒泡排序
public static void twoWaySort(int[] nums) {
int l = 0, r = nums.length - 1;
while(l < r) {
for(int i = l + 1; i <= r; i++) {
if(nums[l] > nums[i]) {
nums[l] ^= nums[i];
nums[i] ^= nums[l];
nums[l] ^= nums[i];
}
}
l++;
for(int i = r - 1; i >= l; i--) {
if(nums[r] < nums[i]) {
nums[r] ^= nums[i];
nums[i] ^= nums[r];
nums[r] ^= nums[i];
}
}
r--;
}
}
// 选择排序
public static void selectSort(int[] nums) {
int n = nums.length;
for(int i = 0; i < n - 1; i++) {
int minVal = i;
for(int j = i + 1; j < n; j++) {
if(nums[minVal] > nums[j]) {
minVal = j;
}
}
if(minVal != i) {
int t = nums[i];
nums[i] = nums[minVal];
nums[minVal] = t;
}
}
}
// 插入排序
public static void insertSort(int[] nums) {
int n = nums.length;
for(int i = 1; i < n; i++) {
int val = nums[i], j = i;
while(j > 0 && val < nums[j - 1]) {
nums[j] = nums[j - 1];
j--;
}
nums[j] = val;
}
}
// 希尔排序
public static void shellSort(int[] nums) {
int n = nums.length;
for(int g = n >> 1; g > 0; g >>= 1) {
for(int i = g; i < n; i++) {
int x = nums[i];
int j = 0;
for(j = i; j >= g && nums[j - g] > x; j -= g) {
nums[j] = nums[j - g];
}
nums[j] = x;
}
}
}
借鉴博客链接:(9条消息) java实现归并排序(详解)_java 归并排序_星辰与晨曦的博客-CSDN博客
介绍
归并排序先将待排序的数组不断拆分,直到拆分到区间里只剩下一个元素的时候。不能再拆分的时候。这个时候我们再想办法合并两个有序的数组,得到长度更长的有序数组。当前合并好的有序数组为下一轮得到更长的有序数组做好了准备。一层一层的合并回去,直到整个数组有序。
实现
public static void mergeSort(int[] nums, int l, int r, int[] temp) {
if(l >= r) return;
int mid = l + r >> 1;
mergeSort(nums, l, mid, temp);
mergeSort(nums, mid + 1, r, temp);
int k = 0, i = l, j = mid + 1;
while(i <= mid && j <= r) {
if(nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
while(i <= mid) temp[k++] = nums[i++];
while(j <= r) temp[k++] = nums[j++];
for(i = l, j = 0; i <= r; i++, j++) {
nums[i] = temp[j];
}
}
介绍
实现
// 快速排序 递归版
public static void quickSort(int[] nums, int l, int r) {
if(l >= r) {
return;
}
int i = l - 1, j = r + 1, x = nums[(l + r) / 2];
while(i < j) {
do i++; while(nums[i] < x);
do j--; while(nums[j] > x);
if(i < j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
quickSort(nums, l, j);
quickSort(nums, j + 1, r);
}
// 快速排序,非递归版
public static void quickSortByStack(int[] nums, int l, int r) {
Stack<Integer> s = new Stack<>();
s.push(r);
s.push(l);
while(!s.isEmpty()) {
int low = s.pop(), high = s.pop();
int i = low, j = high;
if(i >= j) {
continue;
}
int pivot = nums[i];
while(i < j) {
while(i < j && nums[j] >= pivot) j--;
nums[i] = nums[j];
while(i < j && nums[i] < pivot) i++;
nums[j] = nums[i];
}
nums[i] = pivot;
s.push(high);
s.push(i + 1);
s.push(i - 1);
s.push(low);
}
}
import java.util.Scanner;
public class Main{
static int N = 100010;
static int[] h = new int[N];
static int size;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
size = n;
for(int i = 1; i < n + 1; i++) {
h[i] = sc.nextInt();
}
// 建堆
for(int i = n / 2; i != 0; i--) down(i);
while(k-- > 0) {
System.out.print(h[1] + " ");
h[1] = h[size];
size--;
down(1);
}
}
// 下移
public static void down(int u) {
int t = u;
if(2 * u <= size && h[2 * u] < h[t]) t = 2 * u;
if(2 * u + 1 <= size && h[2 * u + 1] < h[t]) t = 2 * u + 1;
if(t != u) {
h[u] ^= h[t];
h[t] ^= h[u];
h[u] ^= h[t];
down(t);
}
}
}
// 计数排序
public static void countSort(int[] nums) {
int n = nums.length;
int[] t = new int[n];
int maxV = nums[0];
for(int i = 1; i < n; i++) {
if(maxV < nums[i]) {
maxV = nums[i];
}
}
int[] count = new int[maxV + 1];
for(int i = 0; i < n; i++) count[nums[i]]++;
for(int i = 1; i <= maxV; i++) count[i] += count[i - 1];
for(int i = n - 1; i >= 0; i--) {
t[count[nums[i]] - 1] = nums[i];
count[nums[i]]--;
}
for(int i = 0; i < n; i++) nums[i] = t[i];
}
借鉴博客链接:(8条消息) java实现基数排序_基数排序java_其实我不想摆烂的博客-CSDN博客
介绍
属于分配式排序,又称桶子法或者bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用。
基数排序的思想是,将所有待比较数值统一为同样的数值长度,数位较短的数前面补0,然后,从最低位开始,依次进行一次排序,这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
实现
// 基数排序
public static void radixSort(int[] nums) {
// 找出数组中的最大值
int max = nums[0];
for(int i : nums) max = max > i ? max : i;
// 计算最大值的位数
int len = (max + "").length();
// 桶的表示。十个桶处理 0-9 十个数字
// 防止数据溢出,所以定义len长度的一维数组来存放每次排序后的序列
// 经典的空间换时间概念
int[][] bucket = new int[10][len];
// 记录每个桶中放置数字的个数
int[] bucketCount = new int[10];
// 循环处理
for(int i = 0, n = 1; i < len; i++, n *= 10) {
// 第i轮对对应的位排序,第一次为个位,第二次为十位
for(int j = 0; j < nums.length; j++) {
int digit = (nums[j] / n) % 10;
bucket[digit][bucketCount[digit]] = nums[j];
bucketCount[digit]++;
}
}
int idx = 0;
for(int i = 0; i < bucketCount.length; i++) {
if(bucketCount[i] != 0) {
for(int j = 0; j < bucketCount[i]; j++) {
nums[idx++] = bucket[i][j];
}
}
bucketCount[i] = 0;
}
}
借鉴博客链接:(8条消息) java实现桶排序(详细解析)桶排序java、信仰_的博客-CSDN博客
介绍
桶排序 (Bucketsort),是一个排序算法,工作的原理是将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的数组内的数值是均匀分配的时候,桶排序使用线性时间(O(n))。
桶排序的思想是,若待排序的记录的关键字在一个明显有限范围内时,可设计有限个有序桶,每个桶只能装与之对应的值,顺序输出各桶的值,将得到有序的序列。简单来说,在我们可以确定需要排列的数组的范围时,可以生成该数值范围内有限个桶去对应数组中的数,然后我们将扫描的数值放入匹配的桶里的行为,可以看作是分类,在分类完成后,我们需要依次按照桶的顺序输出桶内存放的数值,这样就完成了桶排序。
实现
public static void bucketSort(int[] nums) {
int max = nums[0];
for(int i : nums) max = max > i ? max : i;
int[] bucket = new int[max + 1];
for(int i : nums) bucket[i]++;
int idx = 0;
for(int i = 0; i < max + 1; i++ ) {
for(int j = 0; j < bucket[i]; j++) {
nums[idx++] = i;
}
}
}