该文章用到的项目代码与MQ请看下面两篇文章:
要保证消息的可靠性先看一下哪些情况会破坏消息的可靠性:
Exchange
Exchange
后,未找到合适的Queue
综上,我们要解决消息丢失问题,保证MQ的可靠性,就必须从3个方面入手:
生产者确认机制是 RabbitMQ 中的一种机制,用于确保消息成功发送到 RabbitMQ 服务器。这个机制可以防止消息在生产者发送后因为某种原因未能成功到达消息队列,从而提高消息的可靠性。
生产者确认机制,包括Publisher Confirm
和Publisher Return
两种。在开启确认机制的情况下,当生产者发送消息给MQ后,MQ会根据消息处理的情况返回不同的回执。
其中ack
和nack
属于Publisher Confirm机制,ack
是投递成功;nack
是投递失败。而return
则属于Publisher Return机制。
默认两种机制都是关闭状态,需要通过配置文件来开启。
在publisher模块的application.yaml
中添加配置:
spring:
rabbitmq:
publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型
publisher-returns: true # 开启publisher return机制
这里publisher-confirm-type
有三种模式可选:
none
:关闭confirm机制simple
:同步阻塞等待MQ的回执correlated
:MQ异步回调返回回执ReturnCallback
是 RabbitMQ 提供的回调接口,主要用于处理消息无法路由到队列时的返回情况。当消息发送到交换机,但交换机无法将消息路由到任何队列时,就会触发 ReturnCallback
。
每个RabbitTemplate
只能配置一个ReturnCallback
,因此我们可以在配置类中统一设置。我们在publisher模块定义一个配置类:
@Slf4j
@Configuration
public class MqConfig {
@Autowired
private RabbitTemplate rabbitTemplate;
@PostConstruct
public void init(){
rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {
@Override
public void returnedMessage(ReturnedMessage returned) {
log.error("触发return callback,");
log.debug("exchange: {}", returned.getExchange());
log.debug("routingKey: {}", returned.getRoutingKey());
log.debug("message: {}", returned.getMessage());
log.debug("replyCode: {}", returned.getReplyCode());
log.debug("replyText: {}", returned.getReplyText());
}
});
}
}
ConfirmCallback
是 RabbitMQ 提供的回调接口,用于处理消息是否成功发送到 RabbitMQ 服务器的确认。当消息成功到达服务器时,触发 ConfirmCallback
。
由于每个消息发送时的处理逻辑不一定相同,因此ConfirmCallback需要在每次发消息时定义。具体来说,是在调用RabbitTemplate中的convertAndSend方法时,多传递一个参数:
这里的CorrelationData中包含两个核心的东西:
id
:消息的唯一标示,MQ对不同的消息的回执以此做判断,避免混淆SettableListenableFuture
:回执结果的Future对象将来MQ的回执就会通过这个Future
来返回,我们可以提前给CorrelationData
中的Future
添加回调函数来处理消息回执:
我们新建一个测试,向系统自带的交换机发送消息,并且添加ConfirmCallback
:
@Test
public void testConfirm1() {
// 1.创建CorrelationData 这里没传 id ,因为 CorrelationData 无参构造函数里面会创建id
CorrelationData cd = new CorrelationData();
// 2.给Future添加ConfirmCallback
cd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {
@Override
public void onFailure(Throwable ex) {
// 2.1.Future发生异常时的处理逻辑,基本不会触发
log.error("send message fail", ex);
}
@Override
public void onSuccess(CorrelationData.Confirm result) {
// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容
if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执
log.debug("发送消息成功,收到 ack!");
}else{ // result.getReason(),String类型,返回nack时的异常描述
log.error("发送消息失败,收到 nack, reason : {}", result.getReason());
}
}
});
// 3.发送消息
rabbitTemplate.convertAndSend("test.topic", "aaa", "hello", cd);
}
执行结果如下
消息发送成功收到了ACK,但是没有对应的Routing Key
触发了return callback
当我们修改为正确的RoutingKey
以后,就不会触发return callback
了,只收到ack。
而如果连交换机都是错误的,则只会收到nack。
开启生产者确认比较消耗MQ性能,一般不建议开启。而且大家思考一下触发确认的几种情况:
消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。
为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:
在控制台的Exchanges
页面,添加交换机时可以配置交换机的Durability
参数:
设置为Durable
就是持久化模式,Transient
就是临时模式。
在控制台的Queues页面,添加队列时,同样可以配置队列的Durability
参数:
在控制台发送消息的时候,可以添加很多参数,而消息的持久化是要配置一个properties
:
delivery-mode:
在开启持久化机制以后,如果同时还开启了生产者确认,那么MQ会在消息持久化以后才发送ACK回执,进一步确保消息的可靠性。不过出于性能考虑,为了减少IO次数,发送到MQ的消息并不是逐条持久化到数据库的,而是每隔一段时间批量持久化。一般间隔在100毫秒左右,这就会导致ACK有一定的延迟,因此建议生产者确认全部采用异步方式。
RabbitMQ是阅后即焚机制,一般情况下RabbitMQ确认消息投递到消费者后会立刻删除,如果消费者未正常处理这条消息,该消息就会丢失。
设想这样的场景:
这样,消息就丢失了。
为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:
一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过try catch
机制捕获,消息处理成功时返回ack,处理失败时返回nack.
由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:
none
:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用manual
:手动模式。需要自己在业务代码中调用api,发送ack
或reject
,存在业务入侵,但更灵活auto
:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack
. 当业务出现异常时,根据异常判断返回不同结果:
nack
;reject
;通过下面的配置可以修改SpringAMQP的ACK处理方式:
spring:
rabbitmq:
listener:
simple:
acknowledge-mode: none # 不做处理
修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理的异常:
@RabbitListener(queues = "simple.queue")
public void listenTestQueueMessage(String msg) throws InterruptedException {
log.info("spring 消费者接收到消息:【" + msg + "】");
if (true) {
throw new MessageConversionException("故意的");
}
log.info("消息处理完成");
}
测试可以发现:当消息处理发生异常时,消息依然被RabbitMQ删除了。
把确认机制修改为auto:
spring:
rabbitmq:
listener:
simple:
acknowledge-mode: auto # 自动ack
在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unacked
(未确定状态):
放行以后,由于抛出的是消息转换异常,因此Spring会自动返回reject
,所以消息依然会被删除
我们将异常改为RuntimeException类型:
@RabbitListener(queues = "test.queue1")
public void listenTestQueueMessage(String msg) throws InterruptedException {
log.info("spring 消费者接收到消息:【" + msg + "】");
if (true) {
throw new RuntimeException("故意的");
}
log.info("消息处理完成");
}
在异常位置打断点,然后再次发送消息测试,程序卡在断点时,可以发现此时消息状态为unacked
(未确定状态)
放行以后,由于抛出的是业务异常,所以Spring返回ack
,最终消息恢复至Ready
状态然后再次投递变为unacked
状态,并且没有被RabbitMQ删除:
当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。
极端情况就是消费者一直无法执行成功,那么消息requeue就会无限循环,导致mq的消息处理飙升,带来不必要的压力:
为了应对上述情况Spring又提供了消费者失败重试机制:在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。
修改consumer服务的application.yml文件,添加内容:
spring:
rabbitmq:
listener:
simple:
retry:
enabled: true # 开启消费者失败重试
initial-interval: 1000ms # 初识的失败等待时长为1秒
multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
max-attempts: 3 # 最大重试次数
stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
重启consumer服务,重复之前的测试。可以发现:
AmqpRejectAndDontRequeueException
异常。查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是reject
结论:
在之前的测试中,本地测试达到最大重试次数后,消息会被丢弃。这在某些对于消息可靠性要求较高的业务场景下,显然不太合适了。
因此Spring允许我们自定义重试次数耗尽后的消息处理策略,这个策略是由MessageRecovery
接口来定义的,它有3个不同实现:
RejectAndDontRequeueRecoverer
:重试耗尽后,直接reject
,丢弃消息。默认就是这种方式ImmediateRequeueMessageRecoverer
:重试耗尽后,返回nack
,消息重新入队RepublishMessageRecoverer
:重试耗尽后,将失败消息投递到指定的交换机比较优雅的一种处理方案是RepublishMessageRecoverer
,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。
1.在consumer服务中定义处理失败消息的交换机和队列
@Bean
public DirectExchange errorMessageExchange(){
return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
2.定义一个RepublishMessageRecoverer,关联队列和交换机
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
完整代码如下:
@Configuration
// 条件注解 只有在yml文件中 spring.rabbitmq.listener.simple.retry.enabled 属性的值为 true 才生效
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfiguration {
@Bean
public DirectExchange errorMessageExchange(){
return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
}
测试消息发送,消费者重试3次后就将消息转发到了指定的交换机
如何确保RabbitMQ消息的可靠性?