# code by Tae Hwan Jung(Jeff Jung) @graykode, Derek Miller @dmmiller612
# Reference : https://github.com/jadore801120/attention-is-all-you-need-pytorch
# https://github.com/JayParks/transformer
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is short than time steps
def make_batch(sentences):
input_batch = [[src_vocab[n] for n in sentences[0].split()]]
output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
return torch.LongTensor(input_batch), torch.LongTensor(output_batch), torch.LongTensor(target_batch)
def get_sinusoid_encoding_table(n_position, d_model):
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_model)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_model)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table)
def get_attn_pad_mask(seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# eq(zero) is PAD token
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking
return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k
def get_attn_subsequent_mask(seq):
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
subsequent_mask = torch.from_numpy(subsequent_mask).byte()
return subsequent_mask
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
attn = nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads)
self.W_K = nn.Linear(d_model, d_k * n_heads)
self.W_V = nn.Linear(d_model, d_v * n_heads)
self.linear = nn.Linear(n_heads * d_v, d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, Q, K, V, attn_mask):
# q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
residual, batch_size = Q, Q.size(0)
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # q_s: [batch_size x n_heads x len_q x d_k]
k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # k_s: [batch_size x n_heads x len_k x d_k]
v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # v_s: [batch_size x n_heads x len_k x d_v]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
# context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
output = self.linear(context)
return self.layer_norm(output + residual), attn # output: [batch_size x len_q x d_model]
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super(PoswiseFeedForwardNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, inputs):
residual = inputs # inputs : [batch_size, len_q, d_model]
output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
output = self.conv2(output).transpose(1, 2)
return self.layer_norm(output + residual)
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, enc_inputs, enc_self_attn_mask):
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
return enc_outputs, attn
class DecoderLayer(nn.Module):
def __init__(self):
super(DecoderLayer, self).__init__()
self.dec_self_attn = MultiHeadAttention()
self.dec_enc_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs)
return dec_outputs, dec_self_attn, dec_enc_attn
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.src_emb = nn.Embedding(src_vocab_size, d_model)
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
enc_self_attns = []
for layer in self.layers:
enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
enc_self_attns.append(enc_self_attn)
return enc_outputs, enc_self_attns
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1, d_model),freeze=True)
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[5,1,2,3,4]]))
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
dec_self_attns, dec_enc_attns = [], []
for layer in self.layers:
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
return dec_outputs, dec_self_attns, dec_enc_attns
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
def forward(self, enc_inputs, dec_inputs):
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
def showgraph(attn):
attn = attn[-1].squeeze(0)[0]
attn = attn.squeeze(0).data.numpy()
fig = plt.figure(figsize=(n_heads, n_heads)) # [n_heads, n_heads]
ax = fig.add_subplot(1, 1, 1)
ax.matshow(attn, cmap='viridis')
ax.set_xticklabels(['']+sentences[0].split(), fontdict={'fontsize': 14}, rotation=90)
ax.set_yticklabels(['']+sentences[2].split(), fontdict={'fontsize': 14})
plt.show()
if __name__ == '__main__':
sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']
# Transformer Parameters
# Padding Should be Zero
src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4}
src_vocab_size = len(src_vocab)
tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6}
number_dict = {i: w for i, w in enumerate(tgt_vocab)}
tgt_vocab_size = len(tgt_vocab)
src_len = 5 # length of source
tgt_len = 5 # length of target
d_model = 512 # Embedding Size
d_ff = 2048 # FeedForward dimension
d_k = d_v = 64 # dimension of K(=Q), V
n_layers = 6 # number of Encoder of Decoder Layer
n_heads = 8 # number of heads in Multi-Head Attention
model = Transformer()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
enc_inputs, dec_inputs, target_batch = make_batch(sentences)
for epoch in range(20):
optimizer.zero_grad()
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
loss = criterion(outputs, target_batch.contiguous().view(-1))
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
# Test
predict, _, _, _ = model(enc_inputs, dec_inputs)
predict = predict.data.max(1, keepdim=True)[1]
print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])
print('first head of last state enc_self_attns')
showgraph(enc_self_attns)
print('first head of last state dec_self_attns')
showgraph(dec_self_attns)
print('first head of last state dec_enc_attns')
showgraph(dec_enc_attns)
if __name__ == '__main__':
## 句子输入部分,这三个句子是一组句子,属于一个样本(机器翻译例子),batch_size = 1
sentences = ['ich mochte ein bier P', 'S i want a beer', 'i want a beer E']
编码端输入:ich mochte ein bier P
解码端输入:S i want a beer
与解码段输出对比计算损失的真实标签(分类问题计算损失):i want a beer E
三个特殊字符:S——start,E——end,P——pad字符填充字符
在训练中batch size往往不是1(不止一个样本)。 eg. batch
size设置为4,有四个样本(4组句子),每组句子包含如上3个句子。 下面的图片代表每组句子中的第一个
一个batch在被模型处理时,采用矩阵化运算,若一个batch中句子长度不一致就无法组成有效矩阵
解决方法:设置一个最大长度max_len
,大于maxLenth的部分截掉,小于maxLenth的部分用pad字符
补齐
encoder解码,从解码端的输入到输出,再把输出拿到解码端作为下一册的输入,该过程无法并行(下一时刻的输入取决于上一时刻的输出);
为加快收敛和训练速度,采用Teacher forcing方法:直接将真实标签
作为一种输入,使用mask把后面的单词全部mask住(不让看到当前时刻后面的单词)
# Transformer Parameters
# Padding Should be Zero
## 构建词表
## 编码端词表
src_vocab = {'P': 0, 'ich': 1, 'mochte': 2, 'ein': 3, 'bier': 4}
src_vocab_size = len(src_vocab)
## 解码端词表
tgt_vocab = {'P': 0, 'i': 1, 'want': 2, 'a': 3, 'beer': 4, 'S': 5, 'E': 6}
number_dict = {i: w for i, w in enumerate(tgt_vocab)}
tgt_vocab_size = len(tgt_vocab)
src_len = 5 # length of source 编码端输入长度
tgt_len = 5 # length of target 解码端输入长度
## 模型参数
d_model = 512 # Embedding Size 每个字符转换为embedding时的大小
d_ff = 2048 # FeedForward dimension 前馈神经网络中linear层 映射的维度
d_k = d_v = 64 # dimension of K(=Q), V
n_layers = 6 # number of Encoder of Decoder Layer encoder和decoder堆叠的数量
n_heads = 8 # number of heads in Multi-Head Attention 多头注意力机制有几个头
## 模型部分 最关键部分
model = Transformer()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
enc_inputs, dec_inputs, target_batch = make_batch(sentences)
for epoch in range(20):
optimizer.zero_grad()
outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
loss = criterion(outputs, target_batch.contiguous().view(-1))
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
loss.backward()
optimizer.step()
# Test
predict, _, _, _ = model(enc_inputs, dec_inputs)
predict = predict.data.max(1, keepdim=True)[1]
print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])
print('first head of last state enc_self_attns')
showgraph(enc_self_attns)
print('first head of last state dec_self_attns')
showgraph(dec_self_attns)
print('first head of last state dec_enc_attns')
showgraph(dec_enc_attns)
从整体网络结构来看,分为三个部分:编码层,解码层,输出层
class Transformer(nn.Module):
#初始化函数:将这三部分列出来
def __init__(self):
super(Transformer, self).__init__()
self.encoder = Encoder() ## 编码层
self.decoder = Decoder() ## 解码层
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) ## 输出层 d_model 是解码层每个token输出的维度大小,之后会做一个tat_vocab_size大小的softmax
def forward(self, enc_inputs, dec_inputs):
## 两个数据输入, enc_inputs形状为[batch_size, src_len],作为编码端输入,一个dec_input,形状为[batch_size, tgt_len],作为解码端输入
##enc_inputs作为输入形状为[batch_size,src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出,可以是特定每一层的输出,也可以是中间某些参数的输出;
##enc_outputs就是主要的输出,enc_self_attns这里没记错的是QK转置相乘之后softmax之后的矩阵值,代表的是每个单词和其他单词相关性;
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
## dec_outputs 是decoder主要输出,用于后续的linear映射;dec_self_attns类比于enc_self_attns是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每个单词的相关性
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
## dec_output做映射到词表大小
dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
分为三个部分:词向量embedding,位置编码部分,注意力层及后续前馈神经网络
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.src_emb = nn.Embedding(src_vocab_size, d_model) ##词向量层 生成一个矩阵 src_vocab_size * d_model
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(src_len+1, d_model),freeze=True) ##位置编码情况,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) ## 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来;
def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
## 对于encoder接受一个输入,即enc_input 形状是
## 下面这个代码通过src_emb,进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model]
## 位置编码,把两者相加放入到了这个函数里面
enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,0]]))
##get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
enc_self_attns = []
for layer in self.layers:
## 去看EncoderLayer层函数
enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
enc_self_attns.append(enc_self_attn)
return enc_outputs, enc_self_attns