kantts个性化自动化训练

发布时间:2023年12月25日

官网的都是手动训练,我做了一个自动化训练,执行一下,然后全部就能训练完。

说明:

audio是存放原始音频的位置,auto_train_main是核心自动化代码。

auto_train_main代码:

# -*- coding: utf-8 -*-
import string
import random
import requests
import pymysql
import sys
import os
import shutil
import subprocess

import paramiko
#-1代表错误,0代表警告提示,1代表执行成功
from run import slicer_fn
from run_auto_label import training_model
from basemodel_weitiao import weitiao






def con_mysql():
    conn = pymysql.connect(host="xxx",
                           user="xxx",
                           password="xxx",
                           port=xx,
                           db="xx",
                           charset="utf8")

    return conn


# 查询,是否有正在执行的任务
def get_task(conn, user_id, audio_url):
    cursor = conn.cursor()
    # 是否有空的机器可以训练,以后改队列
    sql = "SELECT * FROM kantts_auto_train_task where status=1"
    cursor.execute(sql)
    results = cursor.fetchall()  # 获取所有查询结果
    if len(results) != 0:
        print("warn:【0.获取task警告】:目前机器正在被人训练...请稍后在来")
        error_msg = "warn:【0.获取task警告】:目前机器正在被人训练...请稍后在来"
        return {"code": 0, "error_msg": error_msg}
    # 这个用户是否已经训练完成
    sql = "SELECT * FROM kantts_auto_train_task where user_id=%s"
    cursor.execute(sql, [user_id])
    results = cursor.fetchall()  # 获取所有查询结果
    if len(results) != 0:
        task_info = results[0]
        code =task_info[3]
        if code == 2:
            error_msg = "warn:【0.获取task警告】:用户已经训练过模型了"
            return {"code": 0, "error_msg": error_msg}
        #更新数据库,继续开始
        return update_task(conn,user_id,audio_url,1,"")

    # 没有数据,则插入任务
    sql = "INSERT INTO " \
          "kantts_auto_train_task(user_id,audio_url,status) " \
          "VALUES(%s,%s,%s)"
    cursor.execute(sql, [user_id, audio_url, 1])
    conn.commit()
    return {"code": 1, "error_msg": ""}




def update_task(conn , user_id , audio_url ,status ,error_msg):
    cursor = conn.cursor()

    sql = "update kantts_auto_train_task set " \
          "user_id = %s ,audio_url = %s, status =%s , error_msg=%s where user_id = %s"
    cursor.execute(sql, [user_id, audio_url, status, error_msg, user_id])
    conn.commit()
    return {"code": 1, "error_msg": ""}

#警告不更新状态,只更新提示
def update_task_warn(conn , user_id   ,error_msg):
    cursor = conn.cursor()

    sql = "update kantts_auto_train_task set " \
          "user_id = %s , error_msg=%s where user_id = %s"
    cursor.execute(sql, [user_id, error_msg, user_id])
    conn.commit()
    return {"code": 1, "error_msg": ""}
# 获取训练的音频数据
#删除目录所有内容
def deletePathFile(path):
    for filename in os.listdir(path):
        file_path = os.path.join(path, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            print('Failed to delete %s. Reason: %s' % (file_path, e))

    print('Successfully deleted all content from directory %s' % path)


def downloadAudio(audio_url):
    if audio_url.endswith(".wav"):
        audio_name = 'audio/source_audio.wav'
        response = requests.get(audio_url, stream=True)
        with open(audio_name, 'wb') as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
        return {"code": 1, "error_msg": ""}
    else:
        error_msg="error:【1.获取音频错误】:音频必须为wav"
        print(error_msg)
        return {"code": -1, "error_msg": error_msg}


def random_string(length):
    letters = string.ascii_letters + string.digits
    return ''.join(random.choice(letters) for _ in range(length))

def checkRs(conn,task,user_id,audio_url):
    if task["code"] == -1:
        # 写入数据库,然后停止
        update_task(conn,user_id,audio_url,-1,task["error_msg"])
        sys.exit()
    if task["code"] == 0:
        # 写入数据库,然后停止
        update_task_warn(conn,user_id,task["error_msg"])
        sys.exit()
#音频切片
def create_split_mkdir(user_id):
    # 判断目录是否存在,不存在则创建
    test_path = '/kan_tts/tmp/test_wavs/' + user_id
    if os.path.exists(test_path):
        # 删除目录及其内容
        shutil.rmtree(test_path)
        os.mkdir(test_path)
    else:
        os.mkdir(test_path)
    return test_path
#同步模型到合成的机器
def scp_file_path(local_path,remote_path):
    remote_path = "mqq@192.168.51.39:"+remote_path
    p = subprocess.Popen(["scp","-r", local_path, remote_path])
    sts = os.waitpid(p.pid, 0)
if __name__ == '__main__':


    user_id = "xxx"
    audio_url = "https://xxx.wav"
    conn = con_mysql()

    print("接收到的参数是{\"user_id\":%s,\"audio_url\":%s}" % (user_id,audio_url))
    #检测机器是否被占用
    task = get_task(conn, user_id, audio_url)
    checkRs(conn,task,user_id,audio_url)

    print("开始执行任务.."+user_id)
    #删除目录中的其他音频
    deletePathFile("audio")
    #获取音频
    print("====1.开始获取音频")
    task = downloadAudio(audio_url)
    checkRs(conn, task, user_id, audio_url)
    print("====1.音频处理完成")
    #切分音频
    print("====2.开始切分音频")
    test_path = create_split_mkdir(user_id)
    try:
        #指定待切分的目录
        slicer_fn("audio",test_path)
    except Exception as e:
        task["code"]=-1
        task["error_msg"]="error:【2.音频切分错误】,请检查你的音频提交音否正常"
        print("error:【2.音频切分错误】,请检查你的音频提交音否正常")
        checkRs(conn, task, user_id, audio_url)
        print(e)
        sys.exit(0)
    print("====2.完成切分音频")
    print("====3.开始进行标注")
    try:
        training_model(user_id)
    except Exception as e:
        task["code"]=-1
        task["error_msg"]="error:【3.数据标注错误】,请检查你的切分音频路径"
        print("error:【3.数据标注错误】,请检查你的切分音频路径")
        checkRs(conn, task, user_id, audio_url)
        print(e)
        sys.exit(0)
    print("====3.标注完成")
    print("====4.开始微调训练4000步,预计30分钟")
    try:
        dataset_id = "/kan_tts/tmp/output_dir/"+user_id
        pretrain_work_dir = "/kan_tts/tmp/pretrain_work_dir/"+user_id
        weitiao(dataset_id, pretrain_work_dir)
    except Exception as e:
        task["code"]=-1
        task["error_msg"]="error:【4.微调训练错误】,请检查是否音频质量"
        print("error:【4.微调训练错误】,请检查是否音频质量")
        checkRs(conn, task, user_id, audio_url)
        print(e)
        sys.exit(0)
    print("====4,完成微调")
    print("====5,开始往机器同步")
    try:
        local_path = "/kan_tts/tmp/pretrain_work_dir/"+user_id
        remote_path = "/pzk/ttsGuaZai/tmp/pretrain_work_dir"
        task = scp_file_path(local_path,remote_path)
        # if task["code"] == -1:
        #     print(task["error_msg"])
        #     checkRs(conn, task, user_id, audio_url)
        #     sys.exit(0)
    except Exception as e:
        task["code"] = -1
        task["error_msg"] = "error:【5.同步到合成机器错误】,请检查远程目录以及本地目录的predict_dir是否存在此用户模型"
        print("error:【5.同步到合成机器错误】,请检查远程目录以及本地目录的predict_dir是否存在此用户模型")
        print("检查是否开启ssh免密https://blog.csdn.net/u010044182/article/details/128664248")
        checkRs(conn, task, user_id, audio_url)
        print(e)
        sys.exit(0)
    # print("====5,同步结束")
    print("====6,配置数据库-至正式服")
    #配置音频数据库
    #配置当前的正式服的训练信息
    print("====6,配置数据库完成")




其他的代码就是model_scope官网的代码,切分代码请看我历史博客,里面有。

文章来源:https://blog.csdn.net/qq_38403590/article/details/135197857
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。