论文阅读:TinyGPT-V 论文阅读及源码梳理对应

发布时间:2024年01月11日
TODO

有待更新

QFormer作用?

QFormer来自论文BCLI2工作中,用来弥补Frozen Image encoder和Frozen LLM之间的gap。
基于Bert作为初始化的。

推理结构图
Image
blip2_image_eval
QFormer
Liner
Linear
get_context_emb
prompt
Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions.

融合方法:
先将图像转为向量。将prompt除Image部分其他部分依次转为向量。
再将两者mix,得到最终向量。

def get_context_emb(self, prompt, img_list):
    device = img_list[0].device
    prompt_segs = prompt.split("<ImageHere>")
    assert (
        len(prompt_segs) == len(img_list) + 1
    ), "Unmatched numbers of image placeholders and images."

    seg_tokens = [
        self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=i == 0)
        .to(device)
        .input_ids  # only add bos to the first seg
        for i, seg in enumerate(prompt_segs)
    ]

    seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]

    # TODO: 这里具体如何混合在一起的,需要Debug查看
    mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [
        seg_embs[-1]
    ]
    mixed_embs = torch.cat(mixed_embs, dim=1)
    return mixed_embs
文章来源:https://blog.csdn.net/shiwanghualuo/article/details/135539715
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。