有待更新
QFormer来自论文BCLI2工作中,用来弥补Frozen Image encoder和Frozen LLM之间的gap。
基于Bert作为初始化的。
Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions.
融合方法:
先将图像转为向量。将prompt除Image部分其他部分依次转为向量。
再将两者mix,得到最终向量。
def get_context_emb(self, prompt, img_list):
device = img_list[0].device
prompt_segs = prompt.split("<ImageHere>")
assert (
len(prompt_segs) == len(img_list) + 1
), "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=i == 0)
.to(device)
.input_ids # only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
# TODO: 这里具体如何混合在一起的,需要Debug查看
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [
seg_embs[-1]
]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs