目录
秋招复习之哈希表。
「哈希表 hash table」,又称「散列表」,它通过建立键?key
?与值?value
?之间的映射,实现高效的元素查询。具体而言,我们向哈希表中输入一个键?key
?,则可以在?O(1)?时间内获取对应的值?value
?。
除哈希表外,数组和链表也可以实现查询功能,它们的效率对比如表所示。
观察发现,在哈希表中进行增删查改的时间复杂度都是?O(1)?,非常高效。
哈希表的常见操作包括:初始化、查询操作、添加键值对和删除键值对等,示例代码如下:
/* 初始化哈希表 */
Map<Integer, String> map = new HashMap<>();
/* 添加操作 */
// 在哈希表中添加键值对 (key, value)
map.put(12836, "小哈");
map.put(15937, "小啰");
map.put(16750, "小算");
map.put(13276, "小法");
map.put(10583, "小鸭");
/* 查询操作 */
// 向哈希表中输入键 key ,得到值 value
String name = map.get(15937);
/* 删除操作 */
// 在哈希表中删除键值对 (key, value)
map.remove(10583);
/* 初始化哈希表 */
unordered_map<int, string> map;
/* 添加操作 */
// 在哈希表中添加键值对 (key, value)
map[12836] = "小哈";
map[15937] = "小啰";
map[16750] = "小算";
map[13276] = "小法";
map[10583] = "小鸭";
/* 查询操作 */
// 向哈希表中输入键 key ,得到值 value
string name = map[15937];
/* 删除操作 */
// 在哈希表中删除键值对 (key, value)
map.erase(10583);
哈希表有三种常用的遍历方式:遍历键值对、遍历键和遍历值。示例代码如下:
/* 遍历哈希表 */
// 遍历键值对 key->value
for (Map.Entry <Integer, String> kv: map.entrySet()) {
System.out.println(kv.getKey() + " -> " + kv.getValue());
}
// 单独遍历键 key
for (int key: map.keySet()) {
System.out.println(key);
}
// 单独遍历值 value
for (String val: map.values()) {
System.out.println(val);
}
/* 遍历哈希表 */
// 遍历键值对 key->value
for (auto kv: map) {
cout << kv.first << " -> " << kv.second << endl;
}
// 使用迭代器遍历 key->value
for (auto iter = map.begin(); iter != map.end(); iter++) {
cout << iter->first << "->" << iter->second << endl;
}
我们先考虑最简单的情况,仅用一个数组来实现哈希表。在哈希表中,我们将数组中的每个空位称为「桶 bucket」,每个桶可存储一个键值对。因此,查询操作就是找到?key
?对应的桶,并在桶中获取?value
?。
那么,如何基于?key
?定位对应的桶呢?这是通过「哈希函数 hash function」实现的。哈希函数的作用是将一个较大的输入空间映射到一个较小的输出空间。在哈希表中,输入空间是所有?key
?,输出空间是所有桶(数组索引)。换句话说,输入一个?key
?,我们可以通过哈希函数得到该?key
?对应的键值对在数组中的存储位置。
输入一个?key
?,哈希函数的计算过程分为以下两步。
hash()
?计算得到哈希值。capacity
?取模,从而获取该?key
?对应的数组索引?index
?。index = hash(key) % capacity
随后,我们就可以利用?index
?在哈希表中访问对应的桶,从而获取?value
?。
设数组长度?capacity = 100
、哈希算法?hash(key) = key
?,易得哈希函数为?key % 100
?。图? 以?key
?学号和?value
?姓名为例,展示了哈希函数的工作原理。
以下代码实现了一个简单哈希表。其中,我们将?key
?和?value
?封装成一个类?Pair
?,以表示键值对。
/* 键值对 */
class Pair {
public int key;
public String val;
public Pair(int key, String val) {
this.key = key;
this.val = val;
}
}
/* 基于数组实现的哈希表 */
class ArrayHashMap {
private List<Pair> buckets;
public ArrayHashMap() {
// 初始化数组,包含 100 个桶
buckets = new ArrayList<>();
for (int i = 0; i < 100; i++) {
buckets.add(null);
}
}
/* 哈希函数 */
private int hashFunc(int key) {
int index = key % 100;
return index;
}
/* 查询操作 */
public String get(int key) {
int index = hashFunc(key);
Pair pair = buckets.get(index);
if (pair == null)
return null;
return pair.val;
}
/* 添加操作 */
public void put(int key, String val) {
Pair pair = new Pair(key, val);
int index = hashFunc(key);
buckets.set(index, pair);
}
/* 删除操作 */
public void remove(int key) {
int index = hashFunc(key);
// 置为 null ,代表删除
buckets.set(index, null);
}
/* 获取所有键值对 */
public List<Pair> pairSet() {
List<Pair> pairSet = new ArrayList<>();
for (Pair pair : buckets) {
if (pair != null)
pairSet.add(pair);
}
return pairSet;
}
/* 获取所有键 */
public List<Integer> keySet() {
List<Integer> keySet = new ArrayList<>();
for (Pair pair : buckets) {
if (pair != null)
keySet.add(pair.key);
}
return keySet;
}
/* 获取所有值 */
public List<String> valueSet() {
List<String> valueSet = new ArrayList<>();
for (Pair pair : buckets) {
if (pair != null)
valueSet.add(pair.val);
}
return valueSet;
}
/* 打印哈希表 */
public void print() {
for (Pair kv : pairSet()) {
System.out.println(kv.key + " -> " + kv.val);
}
}
}
/* 键值对 */
struct Pair {
public:
int key;
string val;
Pair(int key, string val) {
this->key = key;
this->val = val;
}
};
/* 基于数组实现的哈希表 */
class ArrayHashMap {
private:
vector<Pair *> buckets;
public:
ArrayHashMap() {
// 初始化数组,包含 100 个桶
buckets = vector<Pair *>(100);
}
~ArrayHashMap() {
// 释放内存
for (const auto &bucket : buckets) {
delete bucket;
}
buckets.clear();
}
/* 哈希函数 */
int hashFunc(int key) {
int index = key % 100;
return index;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
Pair *pair = buckets[index];
if (pair == nullptr)
return "";
return pair->val;
}
/* 添加操作 */
void put(int key, string val) {
Pair *pair = new Pair(key, val);
int index = hashFunc(key);
buckets[index] = pair;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
// 释放内存并置为 nullptr
delete buckets[index];
buckets[index] = nullptr;
}
/* 获取所有键值对 */
vector<Pair *> pairSet() {
vector<Pair *> pairSet;
for (Pair *pair : buckets) {
if (pair != nullptr) {
pairSet.push_back(pair);
}
}
return pairSet;
}
/* 获取所有键 */
vector<int> keySet() {
vector<int> keySet;
for (Pair *pair : buckets) {
if (pair != nullptr) {
keySet.push_back(pair->key);
}
}
return keySet;
}
/* 获取所有值 */
vector<string> valueSet() {
vector<string> valueSet;
for (Pair *pair : buckets) {
if (pair != nullptr) {
valueSet.push_back(pair->val);
}
}
return valueSet;
}
/* 打印哈希表 */
void print() {
for (Pair *kv : pairSet()) {
cout << kv->key << " -> " << kv->val << endl;
}
}
};
从本质上看,哈希函数的作用是将所有?key
?构成的输入空间映射到数组所有索引构成的输出空间,而输入空间往往远大于输出空间。因此,理论上一定存在“多个输入对应相同输出”的情况。
对于上述示例中的哈希函数,当输入的?key
?后两位相同时,哈希函数的输出结果也相同。例如,查询学号为 12836 和 20336 的两个学生时,我们得到:
12836 % 100 = 36
20336 % 100 = 36
如图所示,两个学号指向了同一个姓名,这显然是不对的。我们将这种多个输入对应同一输出的情况称为「哈希冲突 hash collision」。
容易想到,哈希表容量?n越大,多个?key
?被分配到同一个桶中的概率就越低,冲突就越少。因此,我们可以通过扩容哈希表来减少哈希冲突。
扩容前键值对?(136, A)
?和?(236, D)
?发生冲突,扩容后冲突消失。
类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时;并且由于哈希表容量?capacity
?改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步增加了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。
「负载因子 load factor」是哈希表的一个重要概念,其定义为哈希表的元素数量除以桶数量,用于衡量哈希冲突的严重程度,也常作为哈希表扩容的触发条件。例如在 Java 中,当负载因子超过?0.75?时,系统会将哈希表扩容至原先的?2?倍。
上一节提到,通常情况下哈希函数的输入空间远大于输出空间,因此理论上哈希冲突是不可避免的。比如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一桶索引。
哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为了解决该问题,每当遇到哈希冲突时,我们就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
哈希表的结构改良方法主要包括“链式地址”和“开放寻址”。
在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 separate chaining」将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。图展示了一个链式地址哈希表的例子。
基于链式地址实现的哈希表的操作方法发生了以下变化。
key
?,经过哈希函数得到桶索引,即可访问链表头节点,然后遍历链表并对比?key
?以查找目标键值对。链式地址存在以下局限性。
以下代码给出了链式地址哈希表的简单实现,需要注意两点。
/* 链式地址哈希表 */
class HashMapChaining {
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
List<List<Pair>> buckets; // 桶数组
/* 构造方法 */
public HashMapChaining() {
size = 0;
capacity = 4;
loadThres = 2.0 / 3.0;
extendRatio = 2;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double) size / capacity;
}
/* 查询操作 */
String get(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若找到 key ,则返回对应 val
for (Pair pair : bucket) {
if (pair.key == key) {
return pair.val;
}
}
// 若未找到 key ,则返回 null
return null;
}
/* 添加操作 */
void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair pair : bucket) {
if (pair.key == key) {
pair.val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
Pair pair = new Pair(key, val);
bucket.add(pair);
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
List<Pair> bucket = buckets.get(index);
// 遍历桶,从中删除键值对
for (Pair pair : bucket) {
if (pair.key == key) {
bucket.remove(pair);
size--;
break;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
List<List<Pair>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new ArrayList<>(capacity);
for (int i = 0; i < capacity; i++) {
buckets.add(new ArrayList<>());
}
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (List<Pair> bucket : bucketsTmp) {
for (Pair pair : bucket) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
void print() {
for (List<Pair> bucket : buckets) {
List<String> res = new ArrayList<>();
for (Pair pair : bucket) {
res.add(pair.key + " -> " + pair.val);
}
System.out.println(res);
}
}
}
/* 链式地址哈希表 */
class HashMapChaining {
private:
int size; // 键值对数量
int capacity; // 哈希表容量
double loadThres; // 触发扩容的负载因子阈值
int extendRatio; // 扩容倍数
vector<vector<Pair *>> buckets; // 桶数组
public:
/* 构造方法 */
HashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3.0), extendRatio(2) {
buckets.resize(capacity);
}
/* 析构方法 */
~HashMapChaining() {
for (auto &bucket : buckets) {
for (Pair *pair : bucket) {
// 释放内存
delete pair;
}
}
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / (double)capacity;
}
/* 查询操作 */
string get(int key) {
int index = hashFunc(key);
// 遍历桶,若找到 key ,则返回对应 val
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
return pair->val;
}
}
// 若未找到 key ,则返回空字符串
return "";
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
int index = hashFunc(key);
// 遍历桶,若遇到指定 key ,则更新对应 val 并返回
for (Pair *pair : buckets[index]) {
if (pair->key == key) {
pair->val = val;
return;
}
}
// 若无该 key ,则将键值对添加至尾部
buckets[index].push_back(new Pair(key, val));
size++;
}
/* 删除操作 */
void remove(int key) {
int index = hashFunc(key);
auto &bucket = buckets[index];
// 遍历桶,从中删除键值对
for (int i = 0; i < bucket.size(); i++) {
if (bucket[i]->key == key) {
Pair *tmp = bucket[i];
bucket.erase(bucket.begin() + i); // 从中删除键值对
delete tmp; // 释放内存
size--;
return;
}
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<vector<Pair *>> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets.clear();
buckets.resize(capacity);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (auto &bucket : bucketsTmp) {
for (Pair *pair : bucket) {
put(pair->key, pair->val);
// 释放内存
delete pair;
}
}
}
/* 打印哈希表 */
void print() {
for (auto &bucket : buckets) {
cout << "[";
for (Pair *pair : bucket) {
cout << pair->key << " -> " << pair->val << ", ";
}
cout << "]\n";
}
}
};
值得注意的是,当链表很长时,查询效率?O(n)?很差。此时可以将链表转换为“AVL 树”或“红黑树”,从而将查询操作的时间复杂度优化至?O(log?n)?。
「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测和多次哈希等。
下面以线性探测为例,介绍开放寻址哈希表的工作机制。
采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
value
?即可;如果遇到空桶,说明目标元素不在哈希表中,返回?None
?。图展示了开放寻址(线性探测)哈希表的键值对分布。根据此哈希函数,最后两位相同的?key
?都会被映射到相同的桶。而通过线性探测,它们被依次存储在该桶以及之下的桶中。
然而,线性探测容易产生“聚集现象”。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。
值得注意的是,我们不能在开放寻址哈希表中直接删除元素。这是因为删除元素会在数组内产生一个空桶?None
?,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在。
为了解决该问题,我们可以采用「懒删除 lazy deletion」机制:它不直接从哈希表中移除元素,而是利用一个常量?TOMBSTONE
?来标记这个桶。在该机制下,None
?和?TOMBSTONE
?都代表空桶,都可以放置键值对。但不同的是,线性探测到?TOMBSTONE
?时应该继续遍历,因为其之下可能还存在键值对。
然而,懒删除可能会加速哈希表的性能退化。这是因为每次删除操作都会产生一个删除标记,随着?TOMBSTONE
?的增加,搜索时间也会增加,因为线性探测可能需要跳过多个?TOMBSTONE
?才能找到目标元素。
为此,考虑在线性探测中记录遇到的首个?TOMBSTONE
?的索引,并将搜索到的目标元素与该?TOMBSTONE
?交换位置。这样做的好处是当每次查询或添加元素时,元素会被移动至距离理想位置(探测起始点)更近的桶,从而优化查询效率。
以下代码实现了一个包含懒删除的开放寻址(线性探测)哈希表。为了更加充分地使用哈希表的空间,我们将哈希表看作一个“环形数组”,当越过数组尾部时,回到头部继续遍历。
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private int size; // 键值对数量
private int capacity = 4; // 哈希表容量
private final double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
private final int extendRatio = 2; // 扩容倍数
private Pair[] buckets; // 桶数组
private final Pair TOMBSTONE = new Pair(-1, "-1"); // 删除标记
/* 构造方法 */
public HashMapOpenAddressing() {
size = 0;
buckets = new Pair[capacity];
}
/* 哈希函数 */
private int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
private double loadFactor() {
return (double) size / capacity;
}
/* 搜索 key 对应的桶索引 */
private int findBucket(int key) {
int index = hashFunc(key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (buckets[index] != null) {
// 若遇到 key ,返回对应的桶索引
if (buckets[index].key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
public String get(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则返回对应 val
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
return buckets[index].val;
}
// 若键值对不存在,则返回 null
return null;
}
/* 添加操作 */
public void put(int key, String val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index].val = val;
return;
}
// 若键值对不存在,则添加该键值对
buckets[index] = new Pair(key, val);
size++;
}
/* 删除操作 */
public void remove(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != null && buckets[index] != TOMBSTONE) {
buckets[index] = TOMBSTONE;
size--;
}
}
/* 扩容哈希表 */
private void extend() {
// 暂存原哈希表
Pair[] bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = new Pair[capacity];
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair pair : bucketsTmp) {
if (pair != null && pair != TOMBSTONE) {
put(pair.key, pair.val);
}
}
}
/* 打印哈希表 */
public void print() {
for (Pair pair : buckets) {
if (pair == null) {
System.out.println("null");
} else if (pair == TOMBSTONE) {
System.out.println("TOMBSTONE");
} else {
System.out.println(pair.key + " -> " + pair.val);
}
}
}
}
/* 开放寻址哈希表 */
class HashMapOpenAddressing {
private:
int size; // 键值对数量
int capacity = 4; // 哈希表容量
const double loadThres = 2.0 / 3.0; // 触发扩容的负载因子阈值
const int extendRatio = 2; // 扩容倍数
vector<Pair *> buckets; // 桶数组
Pair *TOMBSTONE = new Pair(-1, "-1"); // 删除标记
public:
/* 构造方法 */
HashMapOpenAddressing() : size(0), buckets(capacity, nullptr) {
}
/* 析构方法 */
~HashMapOpenAddressing() {
for (Pair *pair : buckets) {
if (pair != nullptr && pair != TOMBSTONE) {
delete pair;
}
}
delete TOMBSTONE;
}
/* 哈希函数 */
int hashFunc(int key) {
return key % capacity;
}
/* 负载因子 */
double loadFactor() {
return (double)size / capacity;
}
/* 搜索 key 对应的桶索引 */
int findBucket(int key) {
int index = hashFunc(key);
int firstTombstone = -1;
// 线性探测,当遇到空桶时跳出
while (buckets[index] != nullptr) {
// 若遇到 key ,返回对应的桶索引
if (buckets[index]->key == key) {
// 若之前遇到了删除标记,则将键值对移动至该索引处
if (firstTombstone != -1) {
buckets[firstTombstone] = buckets[index];
buckets[index] = TOMBSTONE;
return firstTombstone; // 返回移动后的桶索引
}
return index; // 返回桶索引
}
// 记录遇到的首个删除标记
if (firstTombstone == -1 && buckets[index] == TOMBSTONE) {
firstTombstone = index;
}
// 计算桶索引,越过尾部则返回头部
index = (index + 1) % capacity;
}
// 若 key 不存在,则返回添加点的索引
return firstTombstone == -1 ? index : firstTombstone;
}
/* 查询操作 */
string get(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则返回对应 val
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
return buckets[index]->val;
}
// 若键值对不存在,则返回空字符串
return "";
}
/* 添加操作 */
void put(int key, string val) {
// 当负载因子超过阈值时,执行扩容
if (loadFactor() > loadThres) {
extend();
}
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则覆盖 val 并返回
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
buckets[index]->val = val;
return;
}
// 若键值对不存在,则添加该键值对
buckets[index] = new Pair(key, val);
size++;
}
/* 删除操作 */
void remove(int key) {
// 搜索 key 对应的桶索引
int index = findBucket(key);
// 若找到键值对,则用删除标记覆盖它
if (buckets[index] != nullptr && buckets[index] != TOMBSTONE) {
delete buckets[index];
buckets[index] = TOMBSTONE;
size--;
}
}
/* 扩容哈希表 */
void extend() {
// 暂存原哈希表
vector<Pair *> bucketsTmp = buckets;
// 初始化扩容后的新哈希表
capacity *= extendRatio;
buckets = vector<Pair *>(capacity, nullptr);
size = 0;
// 将键值对从原哈希表搬运至新哈希表
for (Pair *pair : bucketsTmp) {
if (pair != nullptr && pair != TOMBSTONE) {
put(pair->key, pair->val);
delete pair;
}
}
}
/* 打印哈希表 */
void print() {
for (Pair *pair : buckets) {
if (pair == nullptr) {
cout << "nullptr" << endl;
} else if (pair == TOMBSTONE) {
cout << "TOMBSTONE" << endl;
} else {
cout << pair->key << " -> " << pair->val << endl;
}
}
}
};
平方探测与线性探测类似,都是开放寻址的常见策略之一。当发生冲突时,平方探测不是简单地跳过一个固定的步数,而是跳过“探测次数的平方”的步数,即?1,4,9,…?步。
平方探测主要具有以下优势。
然而,平方探测并不是完美的。
顾名思义,多次哈希方法使用多个哈希函数?f1(x)、f2(x)、f3(x)、…?进行探测。
None
?。与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会带来额外的计算量。
请注意,开放寻址(线性探测、平方探测和多次哈希)哈希表都存在“不能直接删除元素”的问题。
各种编程语言采取了不同的哈希表实现策略,下面举几个例子。
dict
?使用伪随机数进行探测。HashMap
?内数组长度达到 64 且链表长度达到 8 时,链表会转换为红黑树以提升查找性能。无论是开放寻址还是链式地址,它们只能保证哈希表可以在发生冲突时正常工作,而无法减少哈希冲突的发生。
对于链式地址哈希表,理想情况下键值对均匀分布在各个桶中,达到最佳查询效率;最差情况下所有键值对都存储到同一个桶中,时间复杂度退化至O(n)?。
键值对的分布情况由哈希函数决定。回忆哈希函数的计算步骤,先计算哈希值,再对数组长度取模:
index = hash(key) % capacity
观察以上公式,当哈希表容量?capacity
?固定时,哈希算法?hash()
?决定了输出值,进而决定了键值对在哈希表中的分布情况。
这意味着,为了降低哈希冲突的发生概率,我们应当将注意力集中在哈希算法?hash()
?的设计上。
为了实现“既快又稳”的哈希表数据结构,哈希算法应具备以下特点。
实际上,哈希算法除了可以用于实现哈希表,还广泛应用于其他领域中。
对于密码学的相关应用,为了防止从哈希值推导出原始密码等逆向工程,哈希算法需要具备更高等级的安全特性。
请注意,“均匀分布”与“抗碰撞性”是两个独立的概念,满足均匀分布不一定满足抗碰撞性。例如,在随机输入?key
?下,哈希函数?key % 100
?可以产生均匀分布的输出。然而该哈希算法过于简单,所有后两位相等的?key
?的输出都相同,因此我们可以很容易地从哈希值反推出可用的?key
?,从而破解密码。
哈希算法的设计是一个需要考虑许多因素的复杂问题。然而对于某些要求不高的场景,我们也能设计一些简单的哈希算法。
/* 加法哈希 */
int addHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = (hash + (int) c) % MODULUS;
}
return (int) hash;
}
/* 乘法哈希 */
int mulHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = (31 * hash + (int) c) % MODULUS;
}
return (int) hash;
}
/* 异或哈希 */
int xorHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash ^= (int) c;
}
return hash & MODULUS;
}
/* 旋转哈希 */
int rotHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;
}
return (int) hash;
}
/* 加法哈希 */
int addHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = (hash + (int)c) % MODULUS;
}
return (int)hash;
}
/* 乘法哈希 */
int mulHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = (31 * hash + (int)c) % MODULUS;
}
return (int)hash;
}
/* 异或哈希 */
int xorHash(string key) {
int hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash ^= (int)c;
}
return hash & MODULUS;
}
/* 旋转哈希 */
int rotHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;
}
return (int)hash;
}
我们知道,哈希表的?key
?可以是整数、小数或字符串等数据类型。编程语言通常会为这些数据类型提供内置的哈希算法,用于计算哈希表中的桶索引。以 Python 为例,我们可以调用?hash()
?函数来计算各种数据类型的哈希值。
不同编程语言的内置哈希值计算函数的定义和方法不同。
int num = 3;
int hashNum = Integer.hashCode(num);
// 整数 3 的哈希值为 3
boolean bol = true;
int hashBol = Boolean.hashCode(bol);
// 布尔量 true 的哈希值为 1231
double dec = 3.14159;
int hashDec = Double.hashCode(dec);
// 小数 3.14159 的哈希值为 -1340954729
String str = "Hello 算法";
int hashStr = str.hashCode();
// 字符串“Hello 算法”的哈希值为 -727081396
Object[] arr = { 12836, "小哈" };
int hashTup = Arrays.hashCode(arr);
// 数组 [12836, 小哈] 的哈希值为 1151158
ListNode obj = new ListNode(0);
int hashObj = obj.hashCode();
// 节点对象 utils.ListNode@7dc5e7b4 的哈希值为 2110121908
key
?,哈希表能够在?O(1)?时间内查询到?value
?,效率非常高。key
?映射为数组索引,从而访问对应桶并获取?value
?。key
?可能在经过哈希函数后得到相同的数组索引,导致查询结果出错,这种现象被称为哈希冲突。HashMap
?使用链式地址,而 Python 的?Dict
?采用开放寻址。