[贪心算法] 国王游戏

发布时间:2024年01月17日
题目描述

? 恰逢?H?国国庆,国王邀请?n?位大臣来玩一个有奖游戏。首先,他让每个大臣在左、右手上面分别写下一个整数,国王自己也在左、右手上各写一个整数。然后,让这?n?位大臣排成一排,国王站在队伍的最前面。排好队后,所有的大臣都会获得国王奖赏的若干金币,每位大臣获得的金币数分别是:排在该大臣前面的所有人的左手上的数的乘积除以他自己右手上的数,然后向下取整得到的结果。

? 国王不希望某一个大臣获得特别多的奖赏,所以他想请你帮他重新安排一下队伍的顺序,使得获得奖赏最多的大臣,所获奖赏尽可能的少。注意,国王的位置始终在队伍的最前面。


输入

? 第一行包含一个整数?n,表示大臣的人数。

? 第二行包含两个整数?a?和?b,之间用一个空格隔开,分别表示国王左手和右手上的整数。(均小于?10000)

? 接下来?n?行,每行包含两个整数?a?和?b,之间用一个空格隔开,分别表示每个大臣左手和右手上的整数。(均小于?10000)

输出

? 输出一个整数,表示重新排列后的队伍中获奖赏最多的大臣所获得的金币数。


样例输入
3
1 1
2 3
7 4
4 6
样例输出
2

数据规模与约定

? 时间限制:1 s

? 内存限制:256 M

? 100% 的数据保证?1≤n≤1000

解题分析

本题需要采用一种微扰的思想去探索贪心算法的实现,如何才能排队让得到最多的钱的大臣得到的钱尽可能地少呢?不妨这样去思考,我们假设这些大臣排成了C0,C1,C2,C3,......,Ci,Ci+1, .......Cn,其中C0就是国王,国王一定要排在第一位的,所以不用去考虑他。不妨假设Ci+1这个大臣得到的奖赏就是最多的,那么他得到的钱Pi+1=a0*a1*a2*.....*ai+1/bi+1,在我们的假设下,这个钱一定会大于等于其他人能够得到的钱,接下来,我们考虑对整个队列进行一个“微扰”,就是说,我们把Ci和Ci+1两个人调换一下位置,在这样的调换位置中,可以发现,整个队列中,除了Ci和Ci+1,其他所有人获得的奖赏都,没有发生任何的改变。而Ci+1得到的钱变成了a0*a1*...*ai-1*ai+1/bi+1,Ci得到的钱变成了a0*a1*.....*ai-1*ai+1*ai/bi,可以发现Ci+1得到的钱变少了而Ci得到的钱和原来相比变多了,这个时候,只需让a0*a1*.....*ai-1*ai+1*ai/bi<a0*a1*a2*.....*ai+1/bi+1,也就是ai+1*bi+1<ai*bi,那么Ci得到的钱就小于原来Ci+1得到的钱。也就是说,当ai+1*bi+1<ai*bi的时候,我们让Ci+1和Ci交换位置,这个时候这两个大臣得到的钱一定会比原来更少,换言之,如果我们让左右手相乘的数小的人排前面,大的人排后面,那么得到奖赏最多的大臣得到的钱是所有排列情况中最少的。

代码实现
#include <iostream>
#include <algorithm>
#define MAXN 10005
using namespace std;
int n,a[MAXN],b[MAXN],c[MAXN];
bool cmp(int i,int j){
	if(a[i]*b[i]<a[j]*b[j]){
		return 1;
	}
	return 0;
}
int main(){
	scanf("%d",&n);
	for(int i=0;i<=n;i++){
		scanf("%d %d",&a[i],&b[i]);
	}
	for(int i=0;i<=n;i++){
		c[i]=i;
	}
	sort(c+1,c+n+1,cmp);
	int maxSum=-1e9,p=1*a[0];
	for(int i=1;i<=n;i++){
		int temp=p/b[c[i]];
		maxSum=max(maxSum,temp);
		p*=a[c[i]];
	}
	printf("%d\n",maxSum);
	return 0;
}

文章来源:https://blog.csdn.net/StudyingPanda/article/details/135621692
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。