brpc: a little source code

发布时间:2024年01月13日

之前在https://www.yuque.com/treblez/qksu6c/nqe8ip59cwegl6rk?singleDoc# 《olap/clickhouse-编译器优化与向量化》中我谈过brpc的汇编控制bthread。本文就来看一下brpc作为一个高性能的rpc实现,除了自定义线程栈之外,代码还有什么优秀之处。
因为时间原因,本文不做深入分析,只是解读下几个有意思的模块。

用户态futex

brpc中worker间的状态同步是通过ParkingLot来实现的,ParkingLot就是一个futex的封装类,我们看下brpc如何实现的futex。注意这里的futex不是bthread的futex,而是实现的pthread系统futex。
https://github.com/apache/brpc/blob/master/src/bthread/sys_futex.cpp
一个标准的手写futex,在OS_MACOSX中使用(原因是macos没有实现futex)。
我们都知道,linux里面使用spinlock + futex作为pthread_mutex的实现(https://lwn.net/Articles/360699/):
image.png
那我们在用户态没有唤醒线程队列的能力,怎么实现一个futex呢?答案是用mutex控制临界区(代表互斥锁的那个全局变量)访问,condition_variable实现睡眠和唤醒。
brpc给了一个教科书级别的实现,pthread_once + unordered_map:

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

// bthread - An M:N threading library to make applications more concurrent.

// Date: Wed Mar 14 17:44:58 CST 2018

#include "bthread/sys_futex.h"
#include "butil/scoped_lock.h"
#include "butil/atomicops.h"
#include <pthread.h>
#include <unordered_map>

#if defined(OS_MACOSX)

namespace bthread {

class SimuFutex {
public:
    SimuFutex() : counts(0)
                , ref(0) {
        pthread_mutex_init(&lock, NULL);
        pthread_cond_init(&cond, NULL);
    }
    ~SimuFutex() {
        pthread_mutex_destroy(&lock);
        pthread_cond_destroy(&cond);
    }

public:
    pthread_mutex_t lock;
    pthread_cond_t cond;
    // 有多少线程在等待
    int32_t counts;
    // 有多少线程有所有权
    int32_t ref;
};

static pthread_mutex_t s_futex_map_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_once_t init_futex_map_once = PTHREAD_ONCE_INIT;
// 和linux中的hash_futex() + 队列实现类似
static std::unordered_map<void*, SimuFutex>* s_futex_map = NULL;
static void InitFutexMap() {
    // Leave memory to process's clean up.
    s_futex_map = new (std::nothrow) std::unordered_map<void*, SimuFutex>();
    if (NULL == s_futex_map) {
        exit(1);
    }
    return;
}

int futex_wait_private(void* addr1, int expected, const timespec* timeout) {
    // pthread_once用于控制多线程中某个函数只会被初始化一次
    // init_futex_map_once 是一个pthread_once_t变量,必须全局可见
    // 如果调用出错,那么返回非零值
    if (pthread_once(&init_futex_map_once, InitFutexMap) != 0) {
        LOG(FATAL) << "Fail to pthread_once";
        exit(1);
    }
    std::unique_lock<pthread_mutex_t> mu(s_futex_map_mutex);
    SimuFutex& simu_futex = (*s_futex_map)[addr1];
    ++simu_futex.ref;
    mu.unlock();

    int rc = 0;
    {
        std::unique_lock<pthread_mutex_t> mu1(simu_futex.lock);
        // 冲突,并等待,使用内核态函数mutex
        if (static_cast<butil::atomic<int>*>(addr1)->load() == expected) {
            ++simu_futex.counts;
            if (timeout) {
                timespec timeout_abs = butil::timespec_from_now(*timeout);
                if ((rc = pthread_cond_timedwait(&simu_futex.cond, &simu_futex.lock, &timeout_abs)) != 0) {
                    errno = rc;
                    rc = -1;
                }
            } else {
                if ((rc = pthread_cond_wait(&simu_futex.cond, &simu_futex.lock)) != 0) {
                    errno = rc;
                    rc = -1;
                }
            }
            --simu_futex.counts;
        } else {
            errno = EAGAIN;
            rc = -1;
        }
    }

    std::unique_lock<pthread_mutex_t> mu1(s_futex_map_mutex);
    if (--simu_futex.ref == 0) {
        s_futex_map->erase(addr1);
    }
    mu1.unlock();
    return rc;
}

// 能控制唤醒线程数的wake
int futex_wake_private(void* addr1, int nwake) {
    if (pthread_once(&init_futex_map_once, InitFutexMap) != 0) {
        LOG(FATAL) << "Fail to pthread_once";
        exit(1);
    }
    std::unique_lock<pthread_mutex_t> mu(s_futex_map_mutex);
    auto it = s_futex_map->find(addr1);
    if (it == s_futex_map->end()) {
        mu.unlock();
        return 0;
    }
    SimuFutex& simu_futex = it->second;
    ++simu_futex.ref;
    mu.unlock();

    int nwakedup = 0;
    int rc = 0;
    {
        std::unique_lock<pthread_mutex_t> mu1(simu_futex.lock);
        nwake = (nwake < simu_futex.counts)? nwake: simu_futex.counts;
        for (int i = 0; i < nwake; ++i) {
            if ((rc = pthread_cond_signal(&simu_futex.cond)) != 0) {
                errno = rc;
                break;
            } else {
                ++nwakedup;
            }
        }
    }

    std::unique_lock<pthread_mutex_t> mu2(s_futex_map_mutex);
    if (--simu_futex.ref == 0) {
        s_futex_map->erase(addr1);
    }
    mu2.unlock();
    return nwakedup;
}

} // namespace bthread

#endif

bthread创建

bthread并不是在用户态栈上创建的,而是通过malloc/mmap:


int allocate_stack_storage(StackStorage* s, int stacksize_in, int guardsize_in) {
    const static int PAGESIZE = getpagesize();
    const int PAGESIZE_M1 = PAGESIZE - 1;
    const int MIN_STACKSIZE = PAGESIZE * 2;
    const int MIN_GUARDSIZE = PAGESIZE;

    // Align stacksize
    const int stacksize =
        (std::max(stacksize_in, MIN_STACKSIZE) + PAGESIZE_M1) &
        ~PAGESIZE_M1;

    if (guardsize_in <= 0) {
        void* mem = malloc(stacksize);
        if (NULL == mem) {
            PLOG_EVERY_SECOND(ERROR) << "Fail to malloc (size="
                                     << stacksize << ")";
            return -1;
        }
        s_stack_count.fetch_add(1, butil::memory_order_relaxed);
        s->bottom = (char*)mem + stacksize;
        s->stacksize = stacksize;
        s->guardsize = 0;
        if (RunningOnValgrind()) {
            s->valgrind_stack_id = VALGRIND_STACK_REGISTER(
                s->bottom, (char*)s->bottom - stacksize);
        } else {
            s->valgrind_stack_id = 0;
        }
        return 0;
    } else {
        // Align guardsize
        const int guardsize =
            (std::max(guardsize_in, MIN_GUARDSIZE) + PAGESIZE_M1) &
            ~PAGESIZE_M1;

        const int memsize = stacksize + guardsize;
        void* const mem = mmap(NULL, memsize, (PROT_READ | PROT_WRITE),
                               (MAP_PRIVATE | MAP_ANONYMOUS), -1, 0);

        if (MAP_FAILED == mem) {
            PLOG_EVERY_SECOND(ERROR) 
                << "Fail to mmap size=" << memsize << " stack_count="
                << s_stack_count.load(butil::memory_order_relaxed)
                << ", possibly limited by /proc/sys/vm/max_map_count";
            // may fail due to limit of max_map_count (65536 in default)
            return -1;
        }

        void* aligned_mem = (void*)(((intptr_t)mem + PAGESIZE_M1) & ~PAGESIZE_M1);
        if (aligned_mem != mem) {
            LOG_ONCE(ERROR) << "addr=" << mem << " returned by mmap is not "
                "aligned by pagesize=" << PAGESIZE;
        }
        const int offset = (char*)aligned_mem - (char*)mem;
        if (guardsize <= offset ||
            mprotect(aligned_mem, guardsize - offset, PROT_NONE) != 0) {
            munmap(mem, memsize);
            PLOG_EVERY_SECOND(ERROR) 
                << "Fail to mprotect " << (void*)aligned_mem << " length="
                << guardsize - offset; 
            return -1;
        }

        s_stack_count.fetch_add(1, butil::memory_order_relaxed);
        s->bottom = (char*)mem + memsize;
        s->stacksize = stacksize;
        s->guardsize = guardsize;
        if (RunningOnValgrind()) {
            s->valgrind_stack_id = VALGRIND_STACK_REGISTER(
                s->bottom, (char*)s->bottom - stacksize);
        } else {
            s->valgrind_stack_id = 0;
        }
        return 0;
    }
}

创建之后,会执行一段汇编代码(bthread_make_fcontext):


template <typename StackClass> struct StackFactory {
    struct Wrapper : public ContextualStack {
        explicit Wrapper(void (*entry)(intptr_t)) {
            if (allocate_stack_storage(&storage, *StackClass::stack_size_flag,
                                       FLAGS_guard_page_size) != 0) {
                storage.zeroize();
                context = NULL;
                return;
            }
            context = bthread_make_fcontext(storage.bottom, storage.stacksize, entry);
            stacktype = (StackType)StackClass::stacktype;
        }
        ~Wrapper() {
            if (context) {
                context = NULL;
                deallocate_stack_storage(&storage);
                storage.zeroize();
            }
        }
    };
    
    static ContextualStack* get_stack(void (*entry)(intptr_t)) {
        return butil::get_object<Wrapper>(entry);
    }
    
    static void return_stack(ContextualStack* sc) {
        butil::return_object(static_cast<Wrapper*>(sc));
    }
};

虽然contex.cpp里面的汇编代码看起来多,但是一个bthread_make_fcontext就根据平台不同实现了九遍,这个故事告诉我们要珍爱生命,远离汇编。
以linux_x86为例,我们看看这里做了什么:


#if defined(BTHREAD_CONTEXT_PLATFORM_linux_x86_64) && defined(BTHREAD_CONTEXT_COMPILER_gcc)
__asm (
".text\n"
".globl bthread_make_fcontext\n"
".type bthread_make_fcontext,@function\n"
".align 16\n"
"bthread_make_fcontext:\n"
    // 第一个参数的值作为栈基址
"    movq  %rdi, %rax\n"
    // 16字节对齐
"    andq  $-16, %rax\n"
    // 减去0x48,存储上下文信息
"    leaq  -0x48(%rax), %rax\n"
    // 寄存器偏移 0x38 的位置 存储栈大小
"    movq  %rdx, 0x38(%rax)\n"
    // 保存浮点数运算的状态
"    stmxcsr  (%rax)\n"
    // 保存FPU 控制字寄存器
"    fnstcw   0x4(%rax)\n"
    // 将 finish 标签的地址存储到 %rcx 寄存器中
"    leaq  finish(%rip), %rcx\n"
    // 保存协程结束点位置
"    movq  %rcx, 0x40(%rax)\n"
"    ret \n"
"finish:\n"
"    xorq  %rdi, %rdi\n"
"    call  _exit@PLT\n"
    // 退出失败,程序挂起
"    hlt\n"
".size bthread_make_fcontext,.-bthread_make_fcontext\n"
".section .note.GNU-stack,\"\",%progbits\n"
".previous\n"
);

对象池

brpc没有实现自己的内存分配器,但是做了对象池缓存。
对象池是个单例实现,brpc用了C++11但是并没有用Meyers’ Singleton来创建这个静态单例,而是用static_atomic解决静态变量加载顺序的问题:

template <typename T>
butil::static_atomic<ObjectPool<T>*> ObjectPool<T>::_singleton = BUTIL_STATIC_ATOMIC_INIT(NULL);

加上经典的单例实现:
image.png
我没找到不用Meyers’ Singleton的理由,或许可以改进一下?(Meyers’ Singleton如下所示)
image.png
对象池的获取逻辑被实现为了一个宏,依次从local free chunk、global free chunk获取对象。
这里还注释了对于POD类型,brpc用new T替代new T(),省去赋值0的开销。


        // We need following macro to construct T with different CTOR_ARGS
        // which may include parenthesis because when T is POD, "new T()"
        // and "new T" are different: former one sets all fields to 0 which
        // we don't want.
#define BAIDU_OBJECT_POOL_GET(CTOR_ARGS)                                \
        /* Fetch local free ptr */                                      \
        if (_cur_free.nfree) {                                          \
            BAIDU_OBJECT_POOL_FREE_ITEM_NUM_SUB1;                       \
            return _cur_free.ptrs[--_cur_free.nfree];                   \
        }                                                               \
        /* Fetch a FreeChunk from global.                               \
           TODO: Popping from _free needs to copy a FreeChunk which is  \
           costly, but hardly impacts amortized performance. */         \
        if (_pool->pop_free_chunk(_cur_free)) {                         \
            BAIDU_OBJECT_POOL_FREE_ITEM_NUM_SUB1;                       \
            return _cur_free.ptrs[--_cur_free.nfree];                   \
        }                                                               \
        /* Fetch memory from local block */                             \
        if (_cur_block && _cur_block->nitem < BLOCK_NITEM) {            \
            T* obj = new ((T*)_cur_block->items + _cur_block->nitem) T CTOR_ARGS; \
            if (!ObjectPoolValidator<T>::validate(obj)) {               \
                obj->~T();                                              \
                return NULL;                                            \
            }                                                           \
            ++_cur_block->nitem;                                        \
            return obj;                                                 \
        }                                                               \
        /* Fetch a Block from global */                                 \
        _cur_block = add_block(&_cur_block_index);                      \
        if (_cur_block != NULL) {                                       \
            T* obj = new ((T*)_cur_block->items + _cur_block->nitem) T CTOR_ARGS; \
            if (!ObjectPoolValidator<T>::validate(obj)) {               \
                obj->~T();                                              \
                return NULL;                                            \
            }                                                           \
            ++_cur_block->nitem;                                        \
            return obj;                                                 \
        }                                                               \
        return NULL;                                                    \
 

和大多数内存池实现一样,归还的时候先往thread local放,再往global pool放:


        inline int return_object(T* ptr) {
            // Return to local free list
            if (_cur_free.nfree < ObjectPool::free_chunk_nitem()) {
                _cur_free.ptrs[_cur_free.nfree++] = ptr;
                BAIDU_OBJECT_POOL_FREE_ITEM_NUM_ADD1;
                return 0;
            }
            // Local free list is full, return it to global.
            // For copying issue, check comment in upper get()
            if (_pool->push_free_chunk(_cur_free)) {
                _cur_free.nfree = 1;
                _cur_free.ptrs[0] = ptr;
                BAIDU_OBJECT_POOL_FREE_ITEM_NUM_ADD1;
                return 0;
            }
            return -1;
        }

TaskGroup

这里的任务调度主要是task_runner,task_runner通过调用ending_sched来进行task steal。


void TaskGroup::ending_sched(TaskGroup** pg) {
    TaskGroup* g = *pg;
    bthread_t next_tid = 0;
    // Find next task to run, if none, switch to idle thread of the group.
#ifndef BTHREAD_FAIR_WSQ
    // When BTHREAD_FAIR_WSQ is defined, profiling shows that cpu cost of
    // WSQ::steal() in example/multi_threaded_echo_c++ changes from 1.9%
    // to 2.9%
    const bool popped = g->_rq.pop(&next_tid);
#else
    const bool popped = g->_rq.steal(&next_tid);
#endif
    if (!popped && !g->steal_task(&next_tid)) {
        // Jump to main task if there's no task to run.
        next_tid = g->_main_tid;
    }

    TaskMeta* const cur_meta = g->_cur_meta;
    TaskMeta* next_meta = address_meta(next_tid);
    if (next_meta->stack == NULL) {
        if (next_meta->stack_type() == cur_meta->stack_type()) {
            // also works with pthread_task scheduling to pthread_task, the
            // transfered stack is just _main_stack.
            next_meta->set_stack(cur_meta->release_stack());
        } else {
            ContextualStack* stk = get_stack(next_meta->stack_type(), task_runner);
            if (stk) {
                next_meta->set_stack(stk);
            } else {
                // stack_type is BTHREAD_STACKTYPE_PTHREAD or out of memory,
                // In latter case, attr is forced to be BTHREAD_STACKTYPE_PTHREAD.
                // This basically means that if we can't allocate stack, run
                // the task in pthread directly.
                next_meta->attr.stack_type = BTHREAD_STACKTYPE_PTHREAD;
                next_meta->set_stack(g->_main_stack);
            }
        }
    }
    sched_to(pg, next_meta);
}

在ending_sched()中,会有依次从TG的rq、remote_rq取任务,找不到再窃取其他TG的任务,如果都找不到任务,则设置_cur_meta为_main_tid,然后就会回到run_main_task()的主循环,继续wait_task()等待新任务。
找到任务后,执行sched_to跳转到新任务。


void TaskGroup::sched_to(TaskGroup** pg, TaskMeta* next_meta) {
    TaskGroup* g = *pg;
#ifndef NDEBUG
    if ((++g->_sched_recursive_guard) > 1) {
        LOG(FATAL) << "Recursively(" << g->_sched_recursive_guard - 1
                   << ") call sched_to(" << g << ")";
    }
#endif
    // Save errno so that errno is bthread-specific.
    const int saved_errno = errno;
    void* saved_unique_user_ptr = tls_unique_user_ptr;

    TaskMeta* const cur_meta = g->_cur_meta;
    const int64_t now = butil::cpuwide_time_ns();
    const int64_t elp_ns = now - g->_last_run_ns;
    g->_last_run_ns = now;
    cur_meta->stat.cputime_ns += elp_ns;
    if (cur_meta->tid != g->main_tid()) {
        g->_cumulated_cputime_ns += elp_ns;
    }
    ++cur_meta->stat.nswitch;
    ++ g->_nswitch;
    // Switch to the task
    if (__builtin_expect(next_meta != cur_meta, 1)) {
        g-> = next_meta;
        // Switch tls_bls
        cur_meta->local_storage = tls_bls;
        tls_bls = next_meta->local_storage;

        // Logging must be done after switching the local storage, since the logging lib
        // use bthread local storage internally, or will cause memory leak.
        if ((cur_meta->attr.flags & BTHREAD_LOG_CONTEXT_SWITCH) ||
            (next_meta->attr.flags & BTHREAD_LOG_CONTEXT_SWITCH)) {
            LOG(INFO) << "Switch bthread: " << cur_meta->tid << " -> "
                      << next_meta->tid;
        }

        if (cur_meta->stack != NULL) {
            if (next_meta->stack != cur_meta->stack) {
                jump_stack(cur_meta->stack, next_meta->stack);
                // probably went to another group, need to assign g again.
                g = BAIDU_GET_VOLATILE_THREAD_LOCAL(tls_task_group);
            }
#ifndef NDEBUG
            else {
                // else pthread_task is switching to another pthread_task, sc
                // can only equal when they're both _main_stack
                CHECK(cur_meta->stack == g->_main_stack);
            }
#endif
        }
        // else because of ending_sched(including pthread_task->pthread_task)
    } else {
        LOG(FATAL) << "bthread=" << g->current_tid() << " sched_to itself!";
    }

    while (g->_last_context_remained) {
        RemainedFn fn = g->_last_context_remained;
        g->_last_context_remained = NULL;
        fn(g->_last_context_remained_arg);
        g = BAIDU_GET_VOLATILE_THREAD_LOCAL(tls_task_group);
    }

    // Restore errno
    errno = saved_errno;
    // tls_unique_user_ptr probably changed.
    BAIDU_SET_VOLATILE_THREAD_LOCAL(tls_unique_user_ptr, saved_unique_user_ptr);

#ifndef NDEBUG
    --g->_sched_recursive_guard;
#endif
    *pg = g;
}

通过传入的参数:next_tid找到TM:next_meta,和对应的ContextualStack信息:stk。
如果task_meta切换了,那么调用jump_stack

while (g->_last_context_remained) {
        RemainedFn fn = g->_last_context_remained;
        g->_last_context_remained = NULL;
        fn(g->_last_context_remained_arg);
        g = tls_task_group;
    }

    // Restore errno
    errno = saved_errno;
    tls_unique_user_ptr = saved_unique_user_ptr;

    *pg = g;

jump_stack把函数调用方的相关寄存器入栈,也就是保存调用方的运行环境。在当前函数执行结束之后要从栈中还原数据到相应的寄存器中,从而让调用方继续执行。所以末尾有出栈操作。

#if defined(BTHREAD_CONTEXT_PLATFORM_linux_x86_64) && defined(BTHREAD_CONTEXT_COMPILER_gcc)
__asm (
".text\n"
".globl bthread_jump_fcontext\n"
".type bthread_jump_fcontext,@function\n"
".align 16\n"
"bthread_jump_fcontext:\n"
"    pushq  %rbp  \n"
"    pushq  %rbx  \n"
"    pushq  %r15  \n"
"    pushq  %r14  \n"
"    pushq  %r13  \n"
"    pushq  %r12  \n"
"    leaq  -0x8(%rsp), %rsp\n"
"    cmp  $0, %rcx\n"
"    je  1f\n"
"    stmxcsr  (%rsp)\n"
"    fnstcw   0x4(%rsp)\n"
"1:\n"
"    movq  %rsp, (%rdi)\n"
"    movq  %rsi, %rsp\n"
"    cmp  $0, %rcx\n"
"    je  2f\n"
"    ldmxcsr  (%rsp)\n"
"    fldcw  0x4(%rsp)\n"
"2:\n"
"    leaq  0x8(%rsp), %rsp\n"
"    popq  %r12  \n"
"    popq  %r13  \n"
"    popq  %r14  \n"
"    popq  %r15  \n"
"    popq  %rbx  \n"
"    popq  %rbp  \n"
"    popq  %r8\n"
"    movq  %rdx, %rax\n"
"    movq  %rdx, %rdi\n"
"    jmp  *%r8\n"
".size bthread_jump_fcontext,.-bthread_jump_fcontext\n"
".section .note.GNU-stack,\"\",%progbits\n"
);

栈切换代码如下,其中rdi是&from->context, rsi是 to->context

1:
    movq  %rsp, (%rdi)
    movq  %rsi, %rsp

我们知道%rdi和%rsi表示的是第一个参数和第二个参数,也就是:&from->context 和 to->context。
最后依次将参数出栈之后,%r8寄存器保留了饭回地址,最后会跳转到这个地址恢复bthread执行。

文章来源:https://blog.csdn.net/treblez/article/details/135564122
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。