一、YOLOv8环境搭建
(1)Pytorch的安装
如果你的环境没有部署请参考本人文章:NLP笔记(2)——PyTorch的详细安装_安装torchnlp-CSDN博客
(2)下载最新的Yolov8-obb代码:
?https://github.com/ultralytics/ultralytics
(2)安装配置文件,建议使用镜像源
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
二、DOTA1.0数据集转换
(1)原始数据集格式如下
937.0 913.0 921.0 912.0 923.0 874.0 940.0 875.0 small-vehicle 0
(2)通过坐标在 0 和 1 之间归一化的四个角点来指定边界框,支持的 OBB 数据集格式如下
class_index, x1, y1, x2, y2, x3, y3, x4, y4
?(3)新建一个yoloobb.py文件实现标签转换
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('C:\myyolo\ultralytics-main\dataobb')
#关于dataobb文件下的目录下面会详细说明
(4)跳转到convert_dota_to_yolo_obb.py函数,对class_mapping进行修改
class_mapping = {
"plane": 0,
"baseball-diamond": 1,
"bridge": 2,
"ground-track-field": 3,
"small-vehicle": 4,
"large-vehicle": 5,
"ship": 6,
"tennis-court": 7,
"basketball-court": 8,
"storage-tank": 9,
"soccer-ball-field": 10,
"roundabout": 11,
"harbor": 12,
"swimming-pool": 13,
"helicopter": 14,
}
(5)在ultralytics-main下新建一个文件夹dataobb设置如下结构,分割后的数据集参考:
DOTA数据集切割处理——旋转框和水平框_dota数据集的切分-CSDN博客
其中,images/train和images/val放置原始图片文件,labels/train_original和labels/val_original分别放置原始的标签文件,labels/train和labels/val为空,然后运行步骤(3)的代码,运行结束转换后的标签会保存在labels/train和labels/val中,格式如下。
4 0.915039 0.891602 0.899414 0.890625 0.901367 0.853516 0.917969 0.854492
三、开始训练
(1)下载预训练权重
(2)构建数据集,安装下面目录格式,其他test可为空,一定要对应。
(3)创建一个dota8-obb.yaml,然后将路径和类别改成自己的。
path: C:\myyolo\ultralytics-main\datasets # dataset root dir
train: images/train
val: images/val
#test: images/test
names:
0: plane
1: baseball-diamond
2: bridge
3: ground-track-field
4: small-vehicle
5: large-vehicle
6: ship
7: tennis-court
8: basketball-court
9: storage-tank
10: soccer-ball-field
11: roundabout
12: harbor
13: swimming-pool
14: helicopter
(4)新建yolov8-obb.yaml,修改nc和scales,我使用的是yolov8n.
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 Oriented Bounding Boxes (OBB) model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 15 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
# s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
# m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
# l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
# x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)
(5)新建一个train.py,修改相关参数,即可运行
from ultralytics import YOLO
def main():
model = YOLO('yolov8-obb.yaml').load('yolov8n-obb.pt') # build from YAML and transfer weights
model.train(data='dota8-obb.yaml', epochs=100, imgsz=1024, batch=4, workers=4)
if __name__ == '__main__':
main()
四、验证
from ultralytics import YOLO
def main():
model = YOLO(r'best.pt')
model.val(data='dota8-obb.yaml', imgsz=1024, batch=4, workers=4)
if __name__ == '__main__':
main()
最后:
会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!