C++力扣题目47--全排列II

发布时间:2024年01月18日

47.全排列 II

力扣题目链接(opens new window)

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

#思路

这道题目和46.全排列?(opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

40.组合总和II?(opens new window)90.子集II?(opens new window)我们分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

46.全排列?(opens new window)中已经详细讲解了排列问题的写法,在40.组合总和II?(opens new window)90.子集II?(opens new window)中详细讲解了去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素

  • 时间复杂度: O(n! * n)
  • 空间复杂度: O(n)

#拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

如果改成?used[i - 1] == true, 也是正确的!,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

47.全排列II2

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索。

#总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道used[i - 1] == false也行而used[i - 1] == true也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

这里可能大家又有疑惑,既然?used[i - 1] == false也行而used[i - 1] == true也行,那为什么还要写这个条件呢?

直接这样写 不就完事了?

if (i > 0 && nums[i] == nums[i - 1]) {
    continue;
}

其实并不行,一定要加上?used[i - 1] == false或者used[i - 1] == true,因为 used[i - 1] 要一直是 true 或者一直是false 才可以,而不是 一会是true 一会又是false。 所以这个条件要写上。

是不是豁然开朗了!!

文章来源:https://blog.csdn.net/weixin_47675625/article/details/135659787
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。