Linux内核中,进程状态,就是PCB中的一个字段,是PCB中的一个变量,一般是宏定义出的一批数字。
为了弄明白正在运行的进程是什么意思,我们需要知道进程的不同状态。一个进程可以有几个状态(在Linux内核里,进程有时候也叫做任务)。下面是linux内核源码的状态定义。
/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char * const task_state_array[] = {
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"X (dead)", /* 16 */
"Z (zombie)", /* 32 */
};
再配上下面的图,我们看看各进程状态之间的转换:
状态的变化,本质就是修改整形变量。
看到这大家可能还是比较懵的,下面我们就来细看每一种状态。
首先我们先看教材上的进程状态,再具体到Linux下的进程状态。
每个CPU在系统层面都会维护一个运行队列。(n个CPU就会维护n个运行队列)
什么叫做运行状态?
只要在运行队列中的进程,状态都是运行状态。
只要是在运行队列中的进程,它的PCB中状态字段就是R,数据是准备就绪的,只等CPU运行了。
进程 = 代码 + PCB(内核数据结构)。而我们的代码中,一定或多或少回访问系统中的某些资源(比如:磁盘、显示器、键盘、网卡等)。
我们下面举例来理解一下阻塞状态,下面是一整个链路,串起来理解:
1、当我们是C/C++代码,代码中有 scanf/cin,需要从键盘中输入时,我们用户就是不输入,键盘上的数据就是没有准备就绪的,这就是进程所要访问的数据没有就绪,即不具备访问条件,导致进程的代码无法向后执行。
2、访问的数据没有就绪,操作系统一定是最先知道的,因为操作系统是一款搞管理的软件,它管理计算机的所有软硬件。操作系统管理硬件,本质也是管理数据,“先描述,再组织”。
3、当进程在CPU中被运行的时候,用户一直不输入,这时访问的数据是没有就绪的,于是PCB就被操作系统从运行队列中放到硬件的等待队列中,PCB中状态字段就被改为 阻塞状态,然后去排队等待。一旦用户输入,数据状态立马就被改为了就绪状态,操作系统再将PCB放入到运行队列(将进程唤醒),并将PCB状态改为运行状态,CPU继续开始运行进程。
总结:
1、当PCB不在CPU所维护的运行队列,而在硬件的等待队列中,此时状态就是阻塞状态。
2、进程状态变化的本质:更改PCB中status整数变量; 将PCB链入到不同的列队中。
3、这里的所有过程,只和进程的PCB有关,与进程的数据代码都无关。
4、操作系统中,会有非常多的队列,运行队列、等待硬件的设备等待队列等。
这里我们也就不难想到,平时使用计算机时,启动了非常多的进程后,为什么会那么卡呢?
其实就是操作系统以我们能感知的时间里,将进程的状态不断在改变。
如果一个进程当前被阻塞了,这个进程等待的资源是没有就绪的,该进程就没有办法被调度。
如果此时,恰好 操作系统内的内存资源严重不足(前提) 了,怎么办?
此时我们阻塞进程的代码和数据就可以先写入磁盘中,等数据就绪后,再拷贝到内存中,这时就叫做 阻塞挂起状态(结果) 。这里将内存数据置换到磁盘,针对所有的阻塞进程。这个过程虽然慢了点,但是与资源严重不足将要宕机相比,慢点是可以接收的。
这里数据会被置换到swap分区。一般swap分区大小与内存大小差不多大,如果很大,swap分区很难被写满,内存稍微不足,操作系统就会将数据换出到swap分区,频繁的换出就会导致效率变慢。因此设置小点就会倒逼操作系统自己来处理,而不是频繁使用置换算法,提高效率。
当进程被os调度,曾经被置换出去的进程代码和数据,又要被重新加载到内存。
具体还有就绪挂起,在运行队列中,但是还没有被调度的进程,代码和数据被换出,等调度的时候再换入,这就是就绪挂起,这样会导致效率变低。
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main()
{
while(1)
{
printf("Hello Linux, pid:%d\n", getpid());
sleep(1);
}
return 0;
}
我们编译完代码后运行,并用 ps ajx 命令查进程,看看进程状态:
ps ajx | head -1 && ps ajx | grep mytest | grep -v "grep"
这里明明是运行着呢,为什么状态是S呢?
这是因为CPU跑代码很快,但是外设显示器的速度很慢,大多时间都是在等待显示器。这就是访问了外设,外设数据没有就绪,进程是阻塞状态。
我们去掉 printf 语句,不让代码去访问外设,直接运行,看到的就是R 运行状态了。
大家一定还有疑问,我们说的是R与S状态,但是查出来的却是R+与S+,这是怎么回事呢?
+表示的是前台进程的意思,所谓前台进程就是推在前台的,一旦启动我们的bash(命令行解释器)就无法在使用了,前台进程可以使用 ctrl+c 终止掉的。
后台进程就是跑在后台的,不影响我们bash的工作(输入命令可以执行),只能使用 kill -9 pid 来终止。后台进程的状态就没有+。
后台进程的启动:./exe &
这里我们能看到,当我们打了断点后,去运行程序,走到断点处状态变成了t,t表示tracing追踪的意思。
所以,不管是 T/t 都是阻塞状态,这里没有等待硬件资源,而是等待用户的指令,这就叫做 等待软件条件就绪。 因此在具体的os中这些都叫做阻塞状态。
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
pid_t id = fork();
if(id < 0) return 1;
else if(id == 0)
{
// child
int cnt = 5;
while(cnt)
{
printf("I am child, run times: %d\n", cnt--);
sleep(1);
}
printf("I am child, dead: %d\n", cnt--);
exit(2);
}
else
{
// father
while(1)
{
printf("I am father, running any time!\n");
sleep(1);
}
// 回收操作
}
return 0;
}
父进程没有回收子进程,子进程从S状态变为Z状态,defunct就是死者,死亡的意思。
僵尸进程的危害:
刚我们讲的是子进程先退出,父进程不回收,导致子进程僵尸状态,那如果子进程不退出,而父进程先退出呢?
我们写一段这样的C语言代码来看看:
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
pid_t id = fork();
if(id < 0) return 1;
else if(id == 0)
{
// child
while(1)
{
printf("I am child ...\n");
sleep(1);
}
}
else
{
// father
int cnt = 5;
while(cnt)
{
printf("I am father, run times: %d\n", cnt--);
sleep(1);
}
printf("I am father, dead: %d\n", cnt--);
exit(2);
// 回收操作
}
return 0;
}
当父进程退出时,是由bash回收的,但是子进程是要被父进程回收的,但是父进程先退出了,子进程要被领养,变成孤儿进程。
一般孤儿进程是要被1号进程领养,如果不领养就无法回收,导致内存泄漏。
那1号进程是谁呢?我们查一下:
这里一号进程叫做systemd,它其实就是操作系统。