https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
dataset.py
在这里插入代码片import os
import numpy as np
import glob
from PIL import Image
import cv2
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torch
import matplotlib.pyplot as plt
kaggle_3m='./kaggle_3m/'
dirs=glob.glob(kaggle_3m+'*')
#print(dirs)
#os.listdir('./kaggle_3m\\TCGA_HT_A61B_19991127')
data_img=[]
data_label=[]
for subdir in dirs:
dirname=subdir.split('\\')[-1]
for filename in os.listdir(subdir):
img_path=subdir+'/'+filename #图片的绝对路径
if 'mask' in img_path:
data_label.append(img_path)
else:
data_img.append(img_path)
#data_img[:5] #前几张图 和标签是否对应
#data_label[:5]
data_imgx=[]
for i in range(len(data_label)):#图片和标签对应
img_mask=data_label[i]
img=img_mask[:-9]+'.tif'
data_imgx.append(img)
#data_imgx
data_newimg=[]
data_newlabel=[]
for i in data_label:#获取只有病灶的数据
value=np.max(cv2.imread(i))
try:
if value>0:
data_newlabel.append(i)
i_img=i[:-9]+'.tif'
data_newimg.append(i_img)
except:
pass
#查看结果
#data_newimg[:5]
#data_newlabel[:5]
im=data_newimg[20]
im=Image.open(im)
#im.show(im)
im=data_newlabel[20]
im=Image.open(im)
#im.show(im)
#print("可用数据:")
#print(len(data_newlabel))
#print(len(data_newimg))
#数据转换
train_transformer=transforms.Compose([
transforms.Resize((256,256)),
transforms.ToTensor(),
])
test_transformer=transforms.Compose([
transforms.Resize((256,256)),
transforms.ToTensor()
])
class BrainMRIdataset(Dataset):
def __init__(self, img, mask, transformer):
self.img = img
self.mask = mask
self.transformer = transformer
def __getitem__(self, index):
img = self.img[index]
mask = self.mask[index]
img_open = Image.open(img)
img_tensor = self.transformer(img_open)
mask_open = Image.open(mask)
mask_tensor = self.transformer(mask_open)
mask_tensor = torch.squeeze(mask_tensor).type(torch.long)
return img_tensor, mask_tensor
def __len__(self):
return len(self.img)
s=1000#划分训练集和测试集
train_img=data_newimg[:s]
train_label=data_newlabel[:s]
test_img=data_newimg[s:]
test_label=data_newlabel[s:]
#加载数据
train_data=BrainMRIdataset(train_img,train_label,train_transformer)
test_data=BrainMRIdataset(test_img,test_label,test_transformer)
dl_train=DataLoader(train_data,batch_size=4,shuffle=True)
dl_test=DataLoader(test_data,batch_size=4,shuffle=True)
img,label=next(iter(dl_train))
plt.figure(figsize=(12,8))
for i,(img,label) in enumerate(zip(img[:4],label[:4])):
img=img.permute(1,2,0).numpy()
label=label.numpy()
plt.subplot(2,4,i+1)
plt.imshow(img)
plt.subplot(2,4,i+5)
plt.imshow(label)
model.py
import torch
import torch.nn as nn
class Downsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Downsample, self).__init__()
self.conv_relu = nn.Sequential(
nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels,
kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.pool = nn.MaxPool2d(kernel_size=2)
def forward(self, x, is_pool=True):
if is_pool:
x = self.pool(x)
x = self.conv_relu(x)
return x
class Upsample(nn.Module):
def __init__(self, channels):
super(Upsample, self).__init__()
self.conv_relu = nn.Sequential(
nn.Conv2d(2 * channels, channels,
kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channels, channels,
kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upconv_relu = nn.Sequential(
nn.ConvTranspose2d(channels,
channels // 2,
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv_relu(x)
x = self.upconv_relu(x)
return x
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.down1 = Downsample(3, 64)
self.down2 = Downsample(64, 128)
self.down3 = Downsample(128, 256)
self.down4 = Downsample(256, 512)
self.down5 = Downsample(512, 1024)
self.up = nn.Sequential(
nn.ConvTranspose2d(1024,
512,
kernel_size=3,
stride=2,
padding=1,
output_padding=1),
nn.ReLU(inplace=True)
)
self.up1 = Upsample(512)
self.up2 = Upsample(256)
self.up3 = Upsample(128)
self.conv_2 = Downsample(128, 64)
self.last = nn.Conv2d(64, 2, kernel_size=1)
def forward(self, x):
x1 = self.down1(x, is_pool=False)
x2 = self.down2(x1)
x3 = self.down3(x2)
x4 = self.down4(x3)
x5 = self.down5(x4)
x5 = self.up(x5)
x5 = torch.cat([x4, x5], dim=1) # 32*32*1024
x5 = self.up1(x5) # 64*64*256)
x5 = torch.cat([x3, x5], dim=1) # 64*64*512
x5 = self.up2(x5) # 128*128*128
x5 = torch.cat([x2, x5], dim=1) # 128*128*256
x5 = self.up3(x5) # 256*256*64
x5 = torch.cat([x1, x5], dim=1) # 256*256*128
x5 = self.conv_2(x5, is_pool=False) # 256*256*64
x5 = self.last(x5) # 256*256*3
return x5
if __name__ == '__main__':
x = torch.rand([8, 3, 256, 256])
model = Net()
y = model(x)
train.py
import torch as t
import torch.nn as nn
from tqdm import tqdm #进度条
import model
from dataset import *
device = t.device("cuda") if t.cuda.is_available() else t.device("cpu")
train_data=BrainMRIdataset(train_img,train_label,train_transformer)
test_data=BrainMRIdataset(test_img,test_label,test_transformer)
dl_train=DataLoader(train_data,batch_size=4,shuffle=True)
dl_test=DataLoader(test_data,batch_size=4,shuffle=True)
model = model.Net()
img,label=next(iter(dl_train))
model=model.to('cuda')
img=img.to('cuda')
pred=model(img)
label=label.to('cuda')
loss_fn=nn.CrossEntropyLoss()#交叉熵损失函数
loss_fn(pred,label)
optimizer=torch.optim.Adam(model.parameters(),lr=0.0001)
def train_epoch(epoch, model, trainloader, testloader):
correct = 0
total = 0
running_loss = 0
epoch_iou = [] #交并比
net=model.train()
for x, y in tqdm(testloader):
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
y_pred = torch.argmax(y_pred, dim=1)
correct += (y_pred == y).sum().item()
total += y.size(0)
running_loss += loss.item()
intersection = torch.logical_and(y, y_pred)
union = torch.logical_or(y, y_pred)
batch_iou = torch.sum(intersection) / torch.sum(union)
epoch_iou.append(batch_iou.item())
epoch_loss = running_loss / len(trainloader.dataset)
epoch_acc = correct / (total * 256 * 256)
test_correct = 0
test_total = 0
test_running_loss = 0
epoch_test_iou = []
t.save(net.state_dict(), './Results/weights/unet_weight/{}.pth'.format(epoch))
model.eval()
with torch.no_grad():
for x, y in tqdm(testloader):
x, y = x.to('cuda'), y.to('cuda')
y_pred = model(x)
loss = loss_fn(y_pred, y)
y_pred = torch.argmax(y_pred, dim=1)
test_correct += (y_pred == y).sum().item()
test_total += y.size(0)
test_running_loss += loss.item()
intersection = torch.logical_and(y, y_pred)#预测值和真实值之间的交集
union = torch.logical_or(y, y_pred)#预测值和真实值之间的并集
batch_iou = torch.sum(intersection) / torch.sum(union)
epoch_test_iou.append(batch_iou.item())
epoch_test_loss = test_running_loss / len(testloader.dataset)
epoch_test_acc = test_correct / (test_total * 256 * 256)#预测正确的值除以总共的像素点
print('epoch: ', epoch,
'loss: ', round(epoch_loss, 3),
'accuracy:', round(epoch_acc, 3),
'IOU:', round(np.mean(epoch_iou), 3),
'test_loss: ', round(epoch_test_loss, 3),
'test_accuracy:', round(epoch_test_acc, 3),
'test_iou:', round(np.mean(epoch_test_iou), 3)
)
return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
if __name__ == "__main__":
epochs=20
for epoch in range(epochs):
train_epoch(epoch,
model,
dl_train,
dl_test)
只跑了20个epoch
test.py
import torch as t
import torch.nn as nn
import model
from dataset import *
import matplotlib.pyplot as plt
device = t.device("cuda") if t.cuda.is_available() else t.device("cpu")
train_data=BrainMRIdataset(train_img,train_label,train_transformer)
test_data=BrainMRIdataset(test_img,test_label,test_transformer)
dl_train=DataLoader(train_data,batch_size=4,shuffle=True)
dl_test=DataLoader(test_data,batch_size=4,shuffle=True)
model = model.Net()
img,label=next(iter(dl_train))
model=model.to('cuda')
img=img.to('cuda')
pred=model(img)
label=label.to('cuda')
loss_fn=nn.CrossEntropyLoss()
loss_fn(pred,label)
optimizer=torch.optim.Adam(model.parameters(),lr=0.0001)
def test():
image, mask = next(iter(dl_test))
image=image.to('cuda')
net = model.eval()
net.to(device)
net.load_state_dict(t.load("./Results/weights/unet_weight/18.pth"))
pred_mask = model(image)
pred_mask=pred_mask
mask=torch.squeeze(mask)
pred_mask=pred_mask.cpu()
num=4
plt.figure(figsize=(10, 10))
for i in range(num):
plt.subplot(num, 4, i*num+1)
plt.imshow(image[i].permute(1,2,0).cpu().numpy())
plt.subplot(num, 4, i*num+2)
plt.imshow(mask[i].cpu().numpy(),cmap='gray')#标签
plt.subplot(num, 4, i*num+3)
plt.imshow(torch.argmax(pred_mask[i].permute(1,2,0), axis=-1).detach().numpy(),cmap='gray')#预测
plt.show()
if __name__ == "__main__":
test()
模型分割效果