1263 · Is Subsequence
Algorithms
Description
Given a string s and a string t, check if s is subsequence of t.
You may assume that there is only lower case English letters in both s and t. t is potentially a very long (length ~= 500,000) string, and s is a short string (length <= 100).
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ace” is a subsequence of “abcde” while “aec” is not).
Example
Example 1:
Input: s = “abc”, t = “ahbgdc”
Output: true
Example 2:
Input: s = "axc"
, t = "ahbgdc"
Output: false
Challenge
If there are lots of incoming S, say S1, S2, … , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?
解法1: 双指针。时间复杂度O(n)。空间复杂度O(1)。
class Solution {
public:
/**
* @param s: the given string s
* @param t: the given string t
* @return: check if s is subsequence of t
*/
bool isSubsequence(string &s, string &t) {
if (s.size() > t.size()) return false;
int indexS = 0, indexT = 0;
while (indexT < t.size()) {
if (s[indexS] == t[indexT]) {
indexS++;
}
indexT++;
}
return indexS == s.size();
}
};
解法2:DP。时间复杂度O(n^2),空间复杂度O(n)。
class Solution {
public:
/**
* @param s: the given string s
* @param t: the given string t
* @return: check if s is subsequence of t
*/
bool isSubsequence(string &s, string &t) {
int sizeS = s.size(), sizeT = t.size();
if (sizeS > sizeT) return false;
vector<vector<int>> dp(2, vector<int>(sizeT + 1));
for (int i = 1; i <= sizeS; i++) {
for (int j = 1; j <= sizeT; j++) {
if (s[i - 1] == t[j - 1]) {
dp[i % 2][j] = dp[(i - 1) % 2][j - 1] + 1;
} else {
dp[i % 2][j] = max(dp[(i - 1) % 2][j], dp[i % 2][j - 1]);
}
}
}
return dp[sizeS % 2][sizeT] == sizeS;
}
};