Answer on Mancherster MATH34001

发布时间:2024年01月05日

2020Jan B6

WX:sobolev001

Question

(i) The parameter α \alpha α is first considered to be real and in ( ? 1 , 1 ) (?1, 1) (?1,1); define a branch for the function
f 6 ( z ) = z α ( z + 1 ) 2 f_6(z) =\frac{z^\alpha}{(z + 1)^2} f6?(z)=(z+1)2zα?
and draw a clearly-labelled sketch of the complex z z z-plane showing the position of the branch cut and the only pole of this function. [2 marks]
(ii) State the formula for the residue of a pole of order N N N at z = z 0 z = z_0 z=z0? and use this formula to find the residue of f 6 ( z ) f_6(z) f6?(z) at its only pole. [5 marks]
(iii) By an integration of f 6 ( z ) f_6(z) f6?(z) around a suitable closed (keyhole) contour, show that, for α \alpha α in the given range,
$ ∫ 0 ∞ x α ( x + 1 ) 2 ? d x ? = ? π α sin ? ( π α ) . ?? ( ? ) \int_{0}^{\infty}\frac{x^{\alpha}}{(x+1)^{2}}\,d x\,=\,\frac{\pi\alpha}{\sin(\pi\alpha)}. \ \ (\ast) 0?(x+1)2xα?dx=sin(πα)πα?.??(?) [8 marks]
(iv) Now consider α \alpha α to be complex; use analytic continuation to show that ( ? ) (\ast) (?) holds in a certain domain D D D (which you should find) of the complex α \alpha α-plane. [5 marks]

Ans:

(i) Choose the branch such that 0 ≤ arg ( z ) < 2 π 0\leq \text{arg}(z) < 2\pi 0arg(z)<2π. (i.e. the branch cut lies along the positive real axis See Fig. ).
在这里插入图片描述
The only pole of f 6 ( z ) f_6(z) f6?(z) is z m = ? 1 z_m = -1 zm?=?1 with order 2.

(ii) Def. The formula for the residue of a pole of order N N N R e s ( f ; z 0 ) = lim ? z → z 0 ( 1 ( N ? 1 ) ! d N ? 1 d z N ? 1 ( ( z ? z 0 ) N f ( z ) ) ) \mathrm{Res}(f;z_{0})=\operatorname*{lim}_{z\rightarrow z_{0}}\left(\frac{1}{(N-1)!}\frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}}\left((z-z_{0})^{N}f(z)\right)\right) Res(f;z0?)=zz0?lim?((N?1)!1?dzN?1dN?1?((z?z0?)Nf(z)))
Hence, the residue of f 6 f_6 f6? at ? 1 -1 ?1 is
R e s ( z α ( z + 1 ) 2 ; ? 1 ) = lim ? z → ? 1 ( 1 ( 2 ? 1 ) ! d 2 ? 1 d z 2 ? 1 ( ( z + 1 ) 2 z α ( z + 1 ) 2 ) ) \mathrm{Res}(\frac{z^\alpha}{(z + 1)^2};-1)=\operatorname*{lim}_{z\rightarrow -1}\left(\frac{1}{(2-1)!}\frac{\mathrm{d}^{2-1}}{\mathrm{d}z^{2-1}}\left((z+1)^{2}\frac{z^\alpha}{(z + 1)^2}\right)\right) Res((z+1)2zα?;?1)=z?1lim?((2?1)!1?dz2?1d2?1?((z+1)2(z+1)2zα?))
= lim ? z → ? 1 ( d d z ( z α ) ) = α ( ? 1 ) α ? 1 = α e i ( α ? 1 ) π =\operatorname*{lim}_{z\rightarrow -1}\left(\frac{\mathrm{d}}{\mathrm{d}z}\left(z^\alpha\right)\right)= \alpha (-1)^{\alpha-1}=\alpha e^{i(\alpha-1)\pi} =z?1lim?(dzd?(zα))=α(?1)α?1=αei(α?1)π
(iii) We will make use of a keyhole contour C = γ 1 ∪ γ 2 ∪ γ 3 ∪ γ 4 C=\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} C=γ1?γ2?γ3?γ4? (See Fig.)
a) For γ 1 \gamma_{1} γ1?, we have
∣ ∫ γ 1 f ( z ) ? d z ∣ ≤ 2 π R max ? ∣ z ∣ = R ∣ z α ( z + 1 ) 2 ∣ ≤ 2 π R R α ( R ? 1 ) 2 → 0 ?? a s ?? R → ∞ . \left | \int_{\gamma_{1}}f(z)\,\mathrm{d}z \right | \leq 2\pi R \max_{|z| =R}\left | \frac{z^\alpha}{(z+1)^2}\right | \leq 2\pi R \frac{R^\alpha}{(R-1)^2} \rightarrow 0 \ \ as \ \ R\rightarrow \infty. ?γ1??f(z)dz ?2πRz=Rmax? ?(z+1)2zα? ?2πR(R?1)2Rα?0??as??R∞.
b) For γ 3 \gamma_{3} γ3?, we have
∣ ∫ γ 3 f ( z ) ? d z ∣ ≤ 2 π δ max ? ∣ z ∣ = δ ∣ z α ( z + 1 ) 2 ∣ ≤ 2 π δ δ α ( 1 ? δ ) 2 → 0 ?? a s ?? δ → 0. \left | \int_{\gamma_{3}}f(z)\,\mathrm{d}z \right | \leq 2\pi \delta \max_{|z| =\delta }\left | \frac{z^\alpha}{(z+1)^2}\right | \leq 2\pi \delta \frac{\delta^\alpha}{(1-\delta)^2} \rightarrow 0 \ \ as \ \ \delta \rightarrow 0. ?γ3??f(z)dz ?2πδz=δmax? ?(z+1)2zα? ?2πδ(1?δ)2δα?0??as??δ0.
c) For γ 2 , γ 4 \gamma_{2},\gamma_{4} γ2?,γ4?, we need the function values of z α z^\alpha zα above and below the cut. So for x > 0 x>0 x>0 we have
F 6 ( x + i 0 ) = x α ( x + 1 ) 2 , F_6(x+i0) = \frac{x^\alpha}{(x+1)^2}, F6?(x+i0)=(x+1)2xα?, F 6 ( x ? i 0 ) = x α e i 2 π α ( x + 1 ) 2 . F_6(x-i0) = \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}. F6?(x?i0)=(x+1)2xαei2πα?.
Hence
∫ γ 4 f 6 ( z ) ? d z = ∫ δ R x α ( x + 1 ) 2 d x \int_{\gamma_{4}}f_6(z)\,\mathrm{d}z=\int_{\delta}^R \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x γ4??f6?(z)dz=δR?(x+1)2xα?dx
∫ γ 2 f 6 ( z ) ? d z = ∫ R δ x α e i 2 π α ( x + 1 ) 2 d x = ? ∫ δ R x α e i 2 π α ( x + 1 ) 2 d x \int_{\gamma_{2}}f_6(z)\,\mathrm{d}z=\int^{\delta}_R \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}\mathrm{{d}}x=-\int_{\delta}^R \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}\mathrm{{d}}x γ2??f6?(z)dz=Rδ?(x+1)2xαei2πα?dx=?δR?(x+1)2xαei2πα?dx
and so
∫ γ 2 ∪ γ 4 f 6 ( z ) ? d z = ( 1 ? e i 2 α π ) ∫ δ R x α ( x + 1 ) 2 d x \int_{\gamma_{2}\cup\gamma_{4}}f_6(z)\,\mathrm{d}z = (1-e^{i2\alpha\pi} )\int_{\delta}^R \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x γ2?γ4??f6?(z)dz=(1?ei2απ)δR?(x+1)2xα?dx
We therefore have
∫ C f 6 ( z ) ? d z → ( 1 ? e i 2 α π ) ∫ 0 ∞ x α ( x + 1 ) 2 d x \int_{C}f_6(z)\,\mathrm{d}z \rightarrow (1-e^{i2\alpha\pi} )\int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x C?f6?(z)dz(1?ei2απ)0?(x+1)2xα?dx
as δ → 0 , R → ∞ . \delta \rightarrow 0, R\rightarrow \infty. δ0,R∞. Moreover, by Cauchy Residue Therom.
∮ C f ( z ) ? d z = 2 i π ?? ∑ c o n t o u r C i n s i d e R e s i d u e s ? o f ? f ( z ) \oint_{C}f(z)\,\mathrm{d}z=2i\pi\,\,\sum_{\stackrel{\scriptstyle i n s i d e}{c o n t o u r C}}{\mathrm{Residues~of~}}f(z) C?f(z)dz=2contourCinside?Residues?of?f(z)
Thus,
( 1 ? e i 2 α π ) ∫ 0 ∞ x α ( x + 1 ) 2 d x = 2 π i ? α ? e i ( α ? 1 ) π (1-e^{i2\alpha\pi} )\int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x = 2\pi i \cdot \alpha \cdot e^{i(\alpha-1)\pi} (1?ei2απ)0?(x+1)2xα?dx=2πi?α?ei(α?1)π
∫ 0 ∞ x α ( x + 1 ) 2 d x = 2 π i ? α ? e i ( α ? 1 ) π ( 1 ? e i 2 α π ) = 2 π i ? α ? e i α π e ? i π ( 1 ? e i 2 α π ) \int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x =\frac{ 2\pi i \cdot \alpha \cdot e^{i(\alpha-1)\pi}}{(1-e^{i2\alpha\pi} )}=\frac{ 2\pi i \cdot \alpha \cdot e^{i\alpha\pi}e^{-i\pi}}{(1-e^{i2\alpha\pi} )} 0?(x+1)2xα?dx=(1?ei2απ)2πi?α?ei(α?1)π?=(1?ei2απ)2πi?α?eiαπe??
= 2 π i ? α ? e i α π ( e i 2 α π ? 1 ) = 2 π i α ( e i α π ? e ? i α π ) = π α sin ? ( π α ) =\frac{ 2\pi i \cdot \alpha \cdot e^{i\alpha\pi}}{(e^{i2\alpha\pi}-1 )} =\frac{ 2\pi i \alpha }{(e^{i\alpha\pi}-e^{-i\alpha\pi})} =\frac{ \pi \alpha }{\sin (\pi\alpha)} =(ei2απ?1)2πi?α?eiαπ?=(eiαπ?e?iαπ)2πiα?=sin(πα)πα?

文章来源:https://blog.csdn.net/weixin_42794212/article/details/135375234
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。