WX:sobolev001
(i) The parameter
α
\alpha
α is first considered to be real and in
(
?
1
,
1
)
(?1, 1)
(?1,1); define a branch for the function
f
6
(
z
)
=
z
α
(
z
+
1
)
2
f_6(z) =\frac{z^\alpha}{(z + 1)^2}
f6?(z)=(z+1)2zα?
and draw a clearly-labelled sketch of the complex
z
z
z-plane showing the position of the branch cut and the only pole of this function. [2 marks]
(ii) State the formula for the residue of a pole of order
N
N
N at
z
=
z
0
z = z_0
z=z0? and use this formula to find the residue of
f
6
(
z
)
f_6(z)
f6?(z) at its only pole. [5 marks]
(iii) By an integration of
f
6
(
z
)
f_6(z)
f6?(z) around a suitable closed (keyhole) contour, show that, for
α
\alpha
α in the given range,
$
∫
0
∞
x
α
(
x
+
1
)
2
?
d
x
?
=
?
π
α
sin
?
(
π
α
)
.
??
(
?
)
\int_{0}^{\infty}\frac{x^{\alpha}}{(x+1)^{2}}\,d x\,=\,\frac{\pi\alpha}{\sin(\pi\alpha)}. \ \ (\ast)
∫0∞?(x+1)2xα?dx=sin(πα)πα?.??(?) [8 marks]
(iv) Now consider
α
\alpha
α to be complex; use analytic continuation to show that
(
?
)
(\ast)
(?) holds in a certain domain
D
D
D (which you should find) of the complex
α
\alpha
α-plane. [5 marks]
(i) Choose the branch such that
0
≤
arg
(
z
)
<
2
π
0\leq \text{arg}(z) < 2\pi
0≤arg(z)<2π. (i.e. the branch cut lies along the positive real axis See Fig. ).
The only pole of
f
6
(
z
)
f_6(z)
f6?(z) is
z
m
=
?
1
z_m = -1
zm?=?1 with order 2.
(ii) Def. The formula for the residue of a pole of order
N
N
N
R
e
s
(
f
;
z
0
)
=
lim
?
z
→
z
0
(
1
(
N
?
1
)
!
d
N
?
1
d
z
N
?
1
(
(
z
?
z
0
)
N
f
(
z
)
)
)
\mathrm{Res}(f;z_{0})=\operatorname*{lim}_{z\rightarrow z_{0}}\left(\frac{1}{(N-1)!}\frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}}\left((z-z_{0})^{N}f(z)\right)\right)
Res(f;z0?)=z→z0?lim?((N?1)!1?dzN?1dN?1?((z?z0?)Nf(z)))
Hence, the residue of
f
6
f_6
f6? at
?
1
-1
?1 is
R
e
s
(
z
α
(
z
+
1
)
2
;
?
1
)
=
lim
?
z
→
?
1
(
1
(
2
?
1
)
!
d
2
?
1
d
z
2
?
1
(
(
z
+
1
)
2
z
α
(
z
+
1
)
2
)
)
\mathrm{Res}(\frac{z^\alpha}{(z + 1)^2};-1)=\operatorname*{lim}_{z\rightarrow -1}\left(\frac{1}{(2-1)!}\frac{\mathrm{d}^{2-1}}{\mathrm{d}z^{2-1}}\left((z+1)^{2}\frac{z^\alpha}{(z + 1)^2}\right)\right)
Res((z+1)2zα?;?1)=z→?1lim?((2?1)!1?dz2?1d2?1?((z+1)2(z+1)2zα?))
=
lim
?
z
→
?
1
(
d
d
z
(
z
α
)
)
=
α
(
?
1
)
α
?
1
=
α
e
i
(
α
?
1
)
π
=\operatorname*{lim}_{z\rightarrow -1}\left(\frac{\mathrm{d}}{\mathrm{d}z}\left(z^\alpha\right)\right)= \alpha (-1)^{\alpha-1}=\alpha e^{i(\alpha-1)\pi}
=z→?1lim?(dzd?(zα))=α(?1)α?1=αei(α?1)π
(iii) We will make use of a keyhole contour
C
=
γ
1
∪
γ
2
∪
γ
3
∪
γ
4
C=\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4}
C=γ1?∪γ2?∪γ3?∪γ4? (See Fig.)
a) For
γ
1
\gamma_{1}
γ1?, we have
∣
∫
γ
1
f
(
z
)
?
d
z
∣
≤
2
π
R
max
?
∣
z
∣
=
R
∣
z
α
(
z
+
1
)
2
∣
≤
2
π
R
R
α
(
R
?
1
)
2
→
0
??
a
s
??
R
→
∞
.
\left | \int_{\gamma_{1}}f(z)\,\mathrm{d}z \right | \leq 2\pi R \max_{|z| =R}\left | \frac{z^\alpha}{(z+1)^2}\right | \leq 2\pi R \frac{R^\alpha}{(R-1)^2} \rightarrow 0 \ \ as \ \ R\rightarrow \infty.
?∫γ1??f(z)dz
?≤2πR∣z∣=Rmax?
?(z+1)2zα?
?≤2πR(R?1)2Rα?→0??as??R→∞.
b) For
γ
3
\gamma_{3}
γ3?, we have
∣
∫
γ
3
f
(
z
)
?
d
z
∣
≤
2
π
δ
max
?
∣
z
∣
=
δ
∣
z
α
(
z
+
1
)
2
∣
≤
2
π
δ
δ
α
(
1
?
δ
)
2
→
0
??
a
s
??
δ
→
0.
\left | \int_{\gamma_{3}}f(z)\,\mathrm{d}z \right | \leq 2\pi \delta \max_{|z| =\delta }\left | \frac{z^\alpha}{(z+1)^2}\right | \leq 2\pi \delta \frac{\delta^\alpha}{(1-\delta)^2} \rightarrow 0 \ \ as \ \ \delta \rightarrow 0.
?∫γ3??f(z)dz
?≤2πδ∣z∣=δmax?
?(z+1)2zα?
?≤2πδ(1?δ)2δα?→0??as??δ→0.
c) For
γ
2
,
γ
4
\gamma_{2},\gamma_{4}
γ2?,γ4?, we need the function values of
z
α
z^\alpha
zα above and below the cut. So for
x
>
0
x>0
x>0 we have
F
6
(
x
+
i
0
)
=
x
α
(
x
+
1
)
2
,
F_6(x+i0) = \frac{x^\alpha}{(x+1)^2},
F6?(x+i0)=(x+1)2xα?,
F
6
(
x
?
i
0
)
=
x
α
e
i
2
π
α
(
x
+
1
)
2
.
F_6(x-i0) = \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}.
F6?(x?i0)=(x+1)2xαei2πα?.
Hence
∫
γ
4
f
6
(
z
)
?
d
z
=
∫
δ
R
x
α
(
x
+
1
)
2
d
x
\int_{\gamma_{4}}f_6(z)\,\mathrm{d}z=\int_{\delta}^R \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x
∫γ4??f6?(z)dz=∫δR?(x+1)2xα?dx
∫
γ
2
f
6
(
z
)
?
d
z
=
∫
R
δ
x
α
e
i
2
π
α
(
x
+
1
)
2
d
x
=
?
∫
δ
R
x
α
e
i
2
π
α
(
x
+
1
)
2
d
x
\int_{\gamma_{2}}f_6(z)\,\mathrm{d}z=\int^{\delta}_R \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}\mathrm{{d}}x=-\int_{\delta}^R \frac{x^\alpha e^{i 2\pi\alpha}}{(x+1)^2}\mathrm{{d}}x
∫γ2??f6?(z)dz=∫Rδ?(x+1)2xαei2πα?dx=?∫δR?(x+1)2xαei2πα?dx
and so
∫
γ
2
∪
γ
4
f
6
(
z
)
?
d
z
=
(
1
?
e
i
2
α
π
)
∫
δ
R
x
α
(
x
+
1
)
2
d
x
\int_{\gamma_{2}\cup\gamma_{4}}f_6(z)\,\mathrm{d}z = (1-e^{i2\alpha\pi} )\int_{\delta}^R \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x
∫γ2?∪γ4??f6?(z)dz=(1?ei2απ)∫δR?(x+1)2xα?dx
We therefore have
∫
C
f
6
(
z
)
?
d
z
→
(
1
?
e
i
2
α
π
)
∫
0
∞
x
α
(
x
+
1
)
2
d
x
\int_{C}f_6(z)\,\mathrm{d}z \rightarrow (1-e^{i2\alpha\pi} )\int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x
∫C?f6?(z)dz→(1?ei2απ)∫0∞?(x+1)2xα?dx
as
δ
→
0
,
R
→
∞
.
\delta \rightarrow 0, R\rightarrow \infty.
δ→0,R→∞. Moreover, by Cauchy Residue Therom.
∮
C
f
(
z
)
?
d
z
=
2
i
π
??
∑
c
o
n
t
o
u
r
C
i
n
s
i
d
e
R
e
s
i
d
u
e
s
?
o
f
?
f
(
z
)
\oint_{C}f(z)\,\mathrm{d}z=2i\pi\,\,\sum_{\stackrel{\scriptstyle i n s i d e}{c o n t o u r C}}{\mathrm{Residues~of~}}f(z)
∮C?f(z)dz=2iπcontourCinside∑?Residues?of?f(z)
Thus,
(
1
?
e
i
2
α
π
)
∫
0
∞
x
α
(
x
+
1
)
2
d
x
=
2
π
i
?
α
?
e
i
(
α
?
1
)
π
(1-e^{i2\alpha\pi} )\int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x = 2\pi i \cdot \alpha \cdot e^{i(\alpha-1)\pi}
(1?ei2απ)∫0∞?(x+1)2xα?dx=2πi?α?ei(α?1)π
∫
0
∞
x
α
(
x
+
1
)
2
d
x
=
2
π
i
?
α
?
e
i
(
α
?
1
)
π
(
1
?
e
i
2
α
π
)
=
2
π
i
?
α
?
e
i
α
π
e
?
i
π
(
1
?
e
i
2
α
π
)
\int_{0}^\infty \frac{x^\alpha}{(x+1)^2}\mathrm{{d}}x =\frac{ 2\pi i \cdot \alpha \cdot e^{i(\alpha-1)\pi}}{(1-e^{i2\alpha\pi} )}=\frac{ 2\pi i \cdot \alpha \cdot e^{i\alpha\pi}e^{-i\pi}}{(1-e^{i2\alpha\pi} )}
∫0∞?(x+1)2xα?dx=(1?ei2απ)2πi?α?ei(α?1)π?=(1?ei2απ)2πi?α?eiαπe?iπ?
=
2
π
i
?
α
?
e
i
α
π
(
e
i
2
α
π
?
1
)
=
2
π
i
α
(
e
i
α
π
?
e
?
i
α
π
)
=
π
α
sin
?
(
π
α
)
=\frac{ 2\pi i \cdot \alpha \cdot e^{i\alpha\pi}}{(e^{i2\alpha\pi}-1 )} =\frac{ 2\pi i \alpha }{(e^{i\alpha\pi}-e^{-i\alpha\pi})} =\frac{ \pi \alpha }{\sin (\pi\alpha)}
=(ei2απ?1)2πi?α?eiαπ?=(eiαπ?e?iαπ)2πiα?=sin(πα)πα?