机器学习笔记 - 从2D数据合成3D数据

发布时间:2024年01月03日

一、3D 数据简介

        人们一致认为,从单一角度合成 3D 数据是人类视觉的一项基本功能,这对计算机视觉算法来说极具挑战性。但随着 LiDAR、RGB-D 相机(RealSense、Kinect)和 3D 扫描仪等 3D 传感器的可用性和价格的提高,3D 采集技术的最新进展取得了巨大飞跃。

        与广泛使用的 2D 数据不同,3D 数据具有丰富的尺度和几何信息,从而为机器更好地理解环境提供了机会。然而,与 2D 数据相比,3D 数据的可用性相对较低,且获取成本较高。因此,最近提出了许多深度学习方法来从可用的 2D 数据合成 3D 数据,而不依赖于任何 3D 传感器。但在深入研究这些方法之前,我们应该了解处理 3D 数据的格式。

文章来源:https://blog.csdn.net/bashendixie5/article/details/134674235
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。