SpringCloud使用篇

发布时间:2024年01月16日

☆* o(≧▽≦)o *☆嗨~我是小奥🍹
📄📄📄个人博客:小奥的博客
📄📄📄CSDN:个人CSDN
📙📙📙Github:传送门
📅📅📅面经分享(牛客主页):传送门
🍹文章作者技术和水平有限,如果文中出现错误,希望大家多多指正!
📜 如果觉得内容还不错,欢迎点赞收藏关注哟! ??

文章目录

SpringCloud使用篇

一、认识微服务

需要学习的微服务知识框架构成图如下:

在这里插入图片描述

1.1 单体架构

单体架构:将业务的所有功能集中在一个项目中开发,打成一个包部署。
在这里插入图片描述

单体架构的优缺点如下:

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高(维护困难、升级困难)

1.2 分布式架构

分布式架构:根据业务功能对系统做拆分,每个业务功能模块作为独立项目开发,称为一个服务。

在这里插入图片描述

分布式架构的优缺点:

优点:

  • 降低服务耦合
  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

1.3 微服务架构

微服务的架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题

微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚低耦合

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

在这里插入图片描述

1.4 SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud。

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的开箱即用体验。

其中,常见的组件有以下几种:

  • 服务注册与发现:Eureka、Nacos、Consul
  • 统一配置与管理:SpringCloudConfig、Nacos
  • 服务远程调用:OpenFegin、Dubbo
  • 统一网关路由:SpringCloudGateWay、Zuul
  • 服务链路监控:Zipkin、Sleuth
  • 流控、降级、保护:Hystix、Sentinel

1.5 服务拆分和远程调用

拆分原则

微服务拆分的几个原则如下:

  • 不同微服务,不要重复开发相同业务
  • 微服务数据独立,不要访问其它微服务的数据库
  • 微服务可以将自己的业务暴露为接口,供其它微服务调用

提供者与消费者

在服务调用关系中,会有两个不同的角色:

服务提供者:一次业务中,被其它微服务调用的服务。(提供接口给其它微服务)

服务消费者:一次业务中,调用其它微服务的服务。(调用其它微服务提供的接口)

但是,服务提供者与服务消费者的角色并不是绝对的,而是相对于业务而言。

如果服务A调用了服务B,而服务B又调用了服务C,服务B的角色是什么?

  • 对于A调用B的业务而言:A是服务消费者,B是服务提供者
  • 对于B调用C的业务而言:B是服务消费者,C是服务提供者

因此,服务B既可以是服务提供者,也可以是服务消费者。

二、Eureka注册中心

假如我们的服务提供者用户信息模块use-service部署了多个实例,比如8081、8082、8083。

那么有以下几个问题需要考虑:

  • 订单模块order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
  • 有多个user-service实例地址,order-service调用时该如何选择?
  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

2.1 Eureka的作用

在这里插入图片描述

这些问题都需要利用SpringCloud中的注册中心Eureka来解决。

Eureka的作用:

(1)注册服务信息。user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。

(2)拉取服务的信息。order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取。

(3)在服务消费者模块进行负载均衡。order-service从实例列表中利用负载均衡算法选中一个实例地址。

(4)通过远程调用来调用服务提供者提供的服务

同时,Eureka还提供了心跳续约的机制,通过每30秒一次的心跳检测来判断服务是否能够正常响应。

这样一来,之前的各个问题的解决了。

问题1:order-service如何得知user-service实例地址?

获取地址信息的流程如下:

  • user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。这个叫服务注册
  • eureka-server保存服务名称到服务实例地址列表的映射关系
  • order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取

问题2:order-service如何从多个user-service实例中选择具体的实例?

  • order-service从实例列表中利用负载均衡算法选中一个实例地址
  • 向该实例地址发起远程调用

问题3:order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

  • user-service会每隔一段时间(默认30秒)向eureka-server发起请求,报告自己状态,称为心跳
  • 当超过一定时间没有发送心跳时,eureka-server会认为微服务实例故障,将该实例从服务列表中剔除
  • order-service拉取服务时,就能将故障实例排除了

2.2 搭建Eureka注册中心

创建Euraka-server服务

在我们的项目中创建一个子模块:eureka-server

引入依赖

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

编写启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaApplication {
    public static void main(String[] args) {
        SpringApplication.run(EurekaApplication.class, args);
    }
}

配置文件

server:
  port: 10086
spring:
  application:
    name: eureka-server
eureka:
  client:
    service-url: 
      defaultZone: http://127.0.0.1:10086/eureka

服务访问

启动微服务,然后在浏览器访问:http://127.0.0.1:10086

出现Spring Eureka的页面就是成功启动了注册中心Eureka。

2.2 服务注册

引入依赖

在服务提供者模块的pom文件中,引入下面的eureka-client依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

编写配置文件

spring:
  application:
    name: userservice
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:10086/eureka

启动多个服务实例

我们可以复制多个相同的服务实例进行启动,不过要注意,服务的端口号不能一致,否则无法启动多个实例。

服务启动后,可以去Spring Eureka的页面刷新查看服务实例的信息。

2.3 服务发现

引入依赖

服务发现、服务注册统一都封装在eureka-client依赖,因此这一步与服务注册时一致。

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

配置文件

服务发现也需要知道eureka地址,因此第二步与服务注册一致,都是配置eureka信息。

spring:
  application:
    name: orderservice
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:10086/eureka

服务拉取和负载均衡

最后,我们要去eureka-server中拉取服务提供者的实例列表,并且实现负载均衡。

不过这些动作不用我们去做,只需要添加一些注解即可。

在服务消费者的XxxApplication中,给RestTemplate这个Bean添加一个@LoadBalanced注解。

spring会自动帮助我们从eureka-server端,根据服务提供者名称,获取实例列表,而后完成负载均衡。

三、Ribbon负载均衡

SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。

负载均衡:根据service名称,获取到服务实例的ip和端口。比如我们发出的请求明明是http://userservice/user/1,最后变成了http://localhost:8081

它就是LoadBalancerInterceptor,这个类会在对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表,随后利用负载均衡算法得到真实的服务地址信息,替换服务id。

3.1 LoadBalancerInterceptor

下面我们进行源码跟踪:

// org.springframework.cloud.client.loadbalancer.LoadBalancerInterceptor
public class LoadBalancerInterceptor implements ClientHttpRequestInterceptor {
    private LoadBalancerClient loadBalancer;
    private LoadBalancerRequestFactory requestFactory;

    public LoadBalancerInterceptor(LoadBalancerClient loadBalancer, LoadBalancerRequestFactory requestFactory) {
        this.loadBalancer = loadBalancer;
        this.requestFactory = requestFactory;
    }

    public LoadBalancerInterceptor(LoadBalancerClient loadBalancer) {
        this(loadBalancer, new LoadBalancerRequestFactory(loadBalancer));
    }

    public ClientHttpResponse intercept(final HttpRequest request, final byte[] body, final ClientHttpRequestExecution execution) throws IOException {
        // 获取请求uri,比如http://userservice/user/1
        URI originalUri = request.getURI();
        // 获取uri路径的主机名,其实就是服务id,比如userservice
        String serviceName = originalUri.getHost();
        Assert.state(serviceName != null, "Request URI does not contain a valid hostname: " + originalUri);
        // 处理服务id和用户请求,execute就是处理的逻辑
        return (ClientHttpResponse)this.loadBalancer.execute(serviceName, this.requestFactory.createRequest(request, body, execution));
    }
}

3.2 LoadBalancerClient

	// org.springframework.cloud.netflix.ribbon.RibbonLoadBalancerClient#execute(java.lang.String, org.springframework.cloud.client.loadbalancer.LoadBalancerRequest<T>, java.lang.Object)
	public <T> T execute(String serviceId, LoadBalancerRequest<T> request, Object hint) throws IOException {
        // 获取一个负载均衡器
        ILoadBalancer loadBalancer = this.getLoadBalancer(serviceId);
        // 根据负载均衡的算法在server列表中选择server
        Server server = this.getServer(loadBalancer, hint);
        if (server == null) {
            throw new IllegalStateException("No instances available for " + serviceId);
        } else {
            RibbonServer ribbonServer = new RibbonServer(serviceId, server, this.isSecure(server, serviceId), this.serverIntrospector(serviceId).getMetadata(server));
            return this.execute(serviceId, (ServiceInstance)ribbonServer, (LoadBalancerRequest)request);
        }
    }
  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存。
  • getServer(loadBalancer, hint):利用内置的负载均衡算法,从服务列表中选取一个server。

这样就实现了负载均衡。

3.3 负载均衡策略IRule

从3.2中可以看到调用了getServer(loadBalancer, hint)方法获取了server。

我们点进去看这个方法,如下:

    // org.springframework.cloud.netflix.ribbon.RibbonLoadBalancerClient#getServer(com.netflix.loadbalancer.ILoadBalancer, java.lang.Object)
	protected Server getServer(ILoadBalancer loadBalancer, Object hint) {
        return loadBalancer == null ? null : loadBalancer.chooseServer(hint != null ? hint : "default");
    }

我们继续跟入,查看chooseServer方法:

    // com.netflix.loadbalancer.BaseLoadBalancer#chooseServer
	public Server chooseServer(Object key) {
        if (this.counter == null) {
            this.counter = this.createCounter();
        }

        this.counter.increment();
        if (this.rule == null) {
            return null;
        } else {
            try {
                // 这里可以看到,服务器选择的是this.rule
                return this.rule.choose(key);
            } catch (Exception var3) {
                logger.warn("LoadBalancer [{}]:  Error choosing server for key {}", new Object[]{this.name, key, var3});
                return null;
            }
        }
    }

我们点开这个rule可以看到:

    private static final IRule DEFAULT_RULE = new RoundRobinRule();
    ....
    protected IRule rule;

	public BaseLoadBalancer() {
        this.rule = DEFAULT_RULE;
        ...
    }

这里默认的rule new RoundRobinRule(),该类就是以轮询的方式来进行负载均衡的。

以上就是整个Ribbon负载均衡的流程了。

总结

  • 首先Eureka会拦截我们的RestTemplate请求,比如http://userservice/user/1
  • RibbonLoadBalancerClient会从请求url中获取服务名称,也就是user-service
  • DynamicServerListLoadBalancer根据user-service到eureka拉取服务列表
  • eureka返回列表,localhost:8081、localhost:8082
  • IRule利用内置负载均衡规则,从列表中选择一个,例如localhost:8081
  • RibbonLoadBalancerClient修改请求地址,用localhost:8081替代userservice,得到http://localhost:8081/user/1,发起真实请求

3.4 负载均衡策略

负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类:

在这里插入图片描述

不同规则的含义如下:

内置负载均衡规则类规则描述
RoundRobinRule简单轮询服务列表来选择服务器。它是Ribbon默认的负载均衡规则。
AvailabilityFilteringRule对以下两种服务器进行忽略: (1)在默认情况下,这台服务器如果3次连接失败,这台服务器就会被设置为“短路”状态。短路状态将持续30秒,如果再次连接失败,短路的持续时间就会几何级地增加。 (2)并发数过高的服务器。如果一个服务器的并发连接数过高,配置了AvailabilityFilteringRule规则的客户端也会将其忽略。并发连接数的上限,可以由客户端的<clientName>.<clientConfigNameSpace>.ActiveConnectionsLimit属性进行配置。
WeightedResponseTimeRule为每一个服务器赋予一个权重值。服务器响应时间越长,这个服务器的权重就越小。这个规则会随机选择服务器,这个权重值会影响服务器的选择。
ZoneAvoidanceRule以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询。
BestAvailableRule忽略那些短路的服务器,并选择并发数较低的服务器。
RandomRule随机选择一个可用的服务器。
RetryRule重试机制的选择逻辑

默认的实现就是ZoneAvoidanceRule,是一种轮询方案。

3.5 自定义负载均衡策略

通过定义IRule实现可以修改负载均衡规则,有两种方式:

  1. 代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:
@Bean
public IRule randomRule(){
    return new RandomRule();
}
  1. 配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:
userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则 

注意,一般用默认的负载均衡规则,不做修改。

3.6 饥饿加载

Ribbon默认是采用懒加载,即第一次访问时才会去创建LoadBalanceClient,请求时间会很长。

而饥饿加载则会在项目启动时创建,降低第一次访问的耗时,通过下面配置开启饥饿加载:

ribbon:
  eager-load:
    enabled: true
    clients: userservice

四、Nacos注册中心

Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富,在国内受欢迎程度较高。

4.1 服务注册

Nacos是SpringCloudAlibaba的组件,而SpringCloudAlibaba也遵循SpringCloud中定义的服务注册、服务发现规范。因此使用Nacos和使用Eureka对于微服务来说,并没有太大区别。

主要差异在于:

  • 依赖不同
  • 服务地址不同

引入依赖

在父工程的pom文件中的<dependencyManagement>中引入SpringCloudAlibaba的依赖:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-alibaba-dependencies</artifactId>
    <version>2.2.6.RELEASE</version>
    <type>pom</type>
    <scope>import</scope>
</dependency>

然后在对应的服务中引入nacos-discovery依赖:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

配置文件

在单个模块的pom文件中配置nacos的地址:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848

查看Nacos界面

启动对应的服务之后,登录Nacos管理页面,就可以看到对应的注册好的服务信息。

在这里插入图片描述

4.2 服务分级存储模型

一个服务可以有多个实例,例如我们的user-service,可以有:

  • 127.0.0.1:8081
  • 127.0.0.1:8082
  • 127.0.0.1:8083

假如这些实例分布于全国各地的不同机房,例如:

  • 127.0.0.1:8081,在上海机房
  • 127.0.0.1:8082,在上海机房
  • 127.0.0.1:8083,在杭州机房

Nacos就将同一机房内的实例 划分为一个集群

也就是说,user-service是服务,一个服务可以包含多个集群,如杭州、上海,每个集群下可以有多个实例,形成分级模型,如图:

在这里插入图片描述

微服务互相访问时,应该尽可能访问同集群实例,因为本地访问速度更快。当本集群内不可用时,才访问其它集群。

配置服务集群

修改模块的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

重启两个模块实例后,我们可以在nacos控制台看到集群的配置。

同集群优先的负载均衡

默认的ZoneAvoidanceRule并不能实现根据同集群优先来实现负载均衡。

因此Nacos中提供了一个NacosRule的实现,可以优先从同集群中挑选实例。

1)给模块配置集群信息

修改模块的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

2)修改负载均衡规则

修改模块的application.yml文件,修改负载均衡规则:

userservice:
  ribbon:
    NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 

4.3 权重配置

实际部署中会出现这样的场景:

服务器设备性能有差异,部分实例所在机器性能较好,另一些较差,我们希望性能好的机器承担更多的用户请求。

但默认情况下NacosRule是同集群内随机挑选,不会考虑机器的性能问题。

因此,Nacos提供了权重配置来控制访问频率,权重越大则访问频率越高

在nacos控制台,找到对应模块的实例列表,点击编辑,即可修改权重。

在这里插入图片描述

在弹出的编辑窗口,修改权重:

在这里插入图片描述

注意:如果权重修改为0,则该实例永远不会被访问

4.4 环境隔离

Nacos提供了namespace来实现环境隔离功能。

  • nacos中可以有多个namespace
  • namespace下可以有group、service等
  • 不同namespace之间相互隔离,例如不同namespace的服务互相不可见

创建namespace

默认情况下,所有service、data、group都在同一个namespace,名为public:

在这里插入图片描述

我们可以点击页面新增按钮,添加一个namespace:

在这里插入图片描述

然后,填写表单:

在这里插入图片描述

就能在页面看到一个新的namespace:

在这里插入图片描述

配置namespace

给微服务配置namespace只能通过修改配置来实现。

例如,修改order-service的application.yml文件:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ
        namespace: 492a7d5d-237b-46a1-a99a-fa8e98e4b0f9 # 命名空间,填ID

重启order-service后,访问控制台,可以看到下面的结果:

在这里插入图片描述

4.5 服务实例类型

Nacos的服务实例分为两种类型:

  • 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。
  • 非临时实例:如果实例宕机,不会从服务列表剔除,也可以叫永久实例。

配置一个服务实例为永久实例:

spring:
  cloud:
    nacos:
      discovery:
        ephemeral: false # 设置为非临时实例

4.6 Nacos与Eureka的区别

Nacos与eureka的共同点

  • 都支持服务注册和服务拉取
  • 都支持服务提供者心跳方式做健康检测

Nacos与Eureka的区别

  • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
  • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除
  • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
  • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

4.7 配置管理

Nacos除了可以做注册中心,同样可以做配置管理来使用。

统一配置管理

当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中管理所有实例的配置。

在这里插入图片描述

Nacos一方面可以将配置集中管理,另一方可以在配置变更时,及时通知微服务,实现配置的热更新。

(1) nacos中添加配置文件

在这里插入图片描述

然后在弹出的表单中,填写配置信息:

在这里插入图片描述

注意:项目的核心配置,需要热更新的配置才有放到nacos管理的必要。基本不会变更的一些配置还是保存在微服务本地比较好。

(2) 从微服务拉取配置

微服务要拉取nacos中管理的配置,并且与本地的application.yml配置合并,才能完成项目启动。

但如果尚未读取application.yml,又如何得知nacos地址呢?

因此spring引入了一种新的配置文件:bootstrap.yaml文件,会在application.yml之前被读取,流程如下:

在这里插入图片描述

1)引入nacos-config依赖

首先,在user-service模块服务中,引入nacos-config的客户端依赖:

<!--nacos配置管理依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>

2)添加bootstrap.yaml

然后,在user-service模块服务中添加一个bootstrap.yaml文件,内容如下:

spring:
  application:
    name: userservice # 服务名称
  profiles:
    active: dev #开发环境,这里是dev 
  cloud:
    nacos:
      server-addr: localhost:8848 # Nacos地址
      config:
        file-extension: yaml # 文件后缀名

这里会根据spring.cloud.nacos.server-addr获取nacos地址,再根据

${spring.application.name}-${spring.profiles.active}.${spring.cloud.nacos.config.file-extension}作为文件id,来读取配置。

3)读取nacos配置

在user-service中的UserController中添加业务逻辑,读取pattern.dateformat配置:

@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Value("${pattern.dateformat}")
    private String dateformat;

    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(properties.getDateformat()));
    }
}

在页面访问就可以看到效果了。

配置热更新

我们最终的目的,是修改nacos中的配置后,微服务中无需重启即可让配置生效,也就是配置热更新

要实现配置热更新,可以使用两种方式:

(1) @RefreshScope

在@Value注入的变量所在类上添加注解@RefreshScope:

@RestController
@RequestMapping("/user")
@RefreshScope
public class UserController {
	...
}
(2) @ConfigurationProperties

使用@ConfigurationProperties注解代替@Value注解。

在user-service服务中,添加一个类,读取patterrn.dateformat属性:

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;

@Component
@Data
@ConfigurationProperties(prefix = "pattern")
public class PatternProperties {
    private String dateformat;
}

在UserController中使用这个类代替@Value:

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Autowired
    private PatternProperties patternProperties;

    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(patternProperties.getDateformat()));
    }
    // 略
}

配置共享

其实微服务启动时,会去nacos读取多个配置文件,例如:

  • [spring.application.name]-[spring.profiles.active].yaml,例如:userservice-dev.yaml

  • [spring.application.name].yaml,例如:userservice.yaml

[spring.application.name].yaml不包含环境,因此可以被多个环境共享。

当nacos、服务本地同时出现相同属性时,优先级有高低之分:

  • nacos配置:服务名-profile.yaml > 服务名称.yaml
  • 本地配置:nacos配置 > 本地配置

五、Feign远程调用

Feign是一个声明式的http客户端,官方地址:https://github.com/OpenFeign/feign

其作用就是帮助我们优雅的实现http请求的发送,解决RestTemplate中对URL参数的问题。

5.1 Feign的使用

引入依赖

我们在模块服务的pom文件中引入feign的依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

添加注解

在模块服务的启动类添加注解开启Feign的功能:

@SpringBootApplication
@EnableFeignClients
public class OrderApplication {
	...
}

创建客户端

在order-service中新建一个接口,内容如下:

@FeignClient("userservice")
public interface UserClient {
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

这个客户端主要是基于SpringMVC的注解来声明远程调用的信息,比如:

  • 服务名称:userservice
  • 请求方式:GET
  • 请求路径:/user/{id}
  • 请求参数:Long id
  • 返回值类型:User

这样,Feign就可以帮助我们发送http请求,无需自己使用RestTemplate来发送了。

调用Feign

在OrderService类中的queryOrderById方法,使用Feign客户端代替RestTemplate:

@Service
public class OrderService {

    @Autowired
    private OrderMapper orderMapper;

    @Autowired
    private UserClient userClient;

    public Order queryOrderById(Long orderId) {
        // 1.查询订单
        Order order = orderMapper.findById(orderId);
        // 2.用Feign远程调用
        User user = userClient.findById(order.getUserId());
        // 3.封装user到Order
        order.setUser(user);
        // 4.返回
        return order;
    }
}

5.2 自定义配置

Feign可以支持很多的自定义配置,如下表所示:

类型作用说明
feign.Logger.Level修改日志级别包含四种不同的级别:NONE、BASIC、HEADERS、FULL
feign.codec.Decoder响应结果的解析器http远程调用的结果做解析,例如解析json字符串为java对象
feign.codec.Encoder请求参数编码将请求参数编码,便于通过http请求发送
feign. Contract支持的注解格式默认是SpringMVC的注解
feign. Retryer失败重试机制请求失败的重试机制,默认是没有,不过会使用Ribbon的重试

一般情况下,默认值就能满足我们使用,如果要自定义时,只需要创建自定义的@Bean覆盖默认Bean即可。

日志自定义配置

(1) 配置文件方式

基于配置文件修改feign的日志级别可以针对单个服务:

feign:  
  client:
    config: 
      userservice: # 针对某个微服务的配置
        loggerLevel: FULL #  日志级别 

也可以针对所有服务:

feign:  
  client:
    config: 
      default: # 这里用default就是全局配置,如果是写服务名称,则是针对某个微服务的配置
        loggerLevel: FULL #  日志级别 

而日志的级别分为四种:

  • NONE:不记录任何日志信息,这是默认值。
  • BASIC:仅记录请求的方法,URL以及响应状态码和执行时间
  • HEADERS:在BASIC的基础上,额外记录了请求和响应的头信息
  • FULL:记录所有请求和响应的明细,包括头信息、请求体、元数据。
(2) 代码方式配置

也可以基于Java代码来修改日志级别,先声明一个类,然后声明一个Logger.Level的对象:

public class DefaultFeignConfiguration  {
    @Bean
    public Logger.Level feignLogLevel(){
        return Logger.Level.BASIC; // 日志级别为BASIC
    }
}

如果要全局生效,将其放到启动类的@EnableFeignClients这个注解中:

@EnableFeignClients(defaultConfiguration = DefaultFeignConfiguration .class) 

如果是局部生效,则把它放到对应的@FeignClient这个注解中:

@FeignClient(value = "userservice", configuration = DefaultFeignConfiguration .class) 

5.3 Feign使用优化

Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:

  • URLConnection:默认实现,不支持连接池
  • Apache HttpClient :支持连接池
  • OKHttp:支持连接池

因此提高Feign的性能主要手段就是使用连接池代替默认的URLConnection。

这里我们用Apache的HttpClient来演示。

1)引入依赖

在order-service的pom文件中引入Apache的HttpClient依赖:

<!--httpClient的依赖 -->
<dependency>
    <groupId>io.github.openfeign</groupId>
    <artifactId>feign-httpclient</artifactId>
</dependency>

2)配置连接池

在order-service的application.yml中添加配置:

feign:
  client:
    config:
      default: # default全局的配置
        loggerLevel: BASIC # 日志级别,BASIC就是基本的请求和响应信息
  httpclient:
    enabled: true # 开启feign对HttpClient的支持
    max-connections: 200 # 最大的连接数
    max-connections-per-route: 50 # 每个路径的最大连接数

总结,Feign的优化:

1.日志级别尽量用basic

2.使用HttpClient或OKHttp代替URLConnection

① 引入feign-httpClient依赖

② 配置文件开启httpClient功能,设置连接池参数

5.4 Feign最佳实践

通过Feign的使用我们可以观察到,Feign的客户端与服务提供者的controller代码非常相似。

// Feign
@FeignClient(value = "userservice")
public interface UserClient {

    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

// Controller
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;
    
    @GetMapping("/{id}")
    public User queryById(@PathVariable("id") Long id) {
        return userService.queryById(id);
    }
}

所以,我们可以通过以下几种方式来简化代码:

  • 继承方式
  • 抽取方式

继承方式

一样的代码可以通过继承来共享:

1)定义一个API接口,利用定义方法,并基于SpringMVC注解做声明。

2)Feign客户端和Controller都继承该接口

在这里插入图片描述

优点:

  • 简单
  • 实现了代码共享

缺点:

  • 服务提供方、服务消费方紧耦合
  • 参数列表中的注解映射并不会继承,因此Controller中必须再次声明方法、参数列表、注解

抽取方式

将Feign的Client抽取为独立模块,并且把接口有关的POJO、默认的Feign配置都放到这个模块中,提供给所有消费者使用。

例如,将UserClient、User、Feign的默认配置都抽取到一个feign-api包中,所有微服务引用该依赖包,即可直接使用。

在这里插入图片描述

首先创建一个module,命名为feign-api。

在feign-api中然后引入feign的starter依赖

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

然后,将order-service中编写的user的相关服务代码都放在到feign-api项目中。

在order-service的pom文件中中引入feign-api的依赖:

<dependency>
    <!-- groupId是新建模块的id -->
    <groupId>com.xxx.cloud</groupId>
    <artifactId>feign-api</artifactId>
    <version>1.0</version>
</dependency>

然后修改将代码中的导包路径修正为正确的即可。

另外,还需要在@EnableFeignClients注解上标注扫描路径为com.xxx.feign.clients

六、Gateway服务网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。

网关的核心功能特性

  • 请求路由
  • 权限控制
  • 限流

架构图:

在这里插入图片描述

权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果没有则进行拦截。

路由和负载均衡:一切请求都必须先经过gateway,但网关不处理业务,而是根据某种规则,把请求转发到某个微服务,这个过程叫做路由。当然路由的目标服务有多个时,还需要做负载均衡。

限流:当请求流量过高时,在网关中按照下流的微服务能够接受的速度来放行请求,避免服务压力过大。

在SpringCloud中网关的实现包括两种:

  • gateway
  • zuul

Zuul是基于Servlet的实现,属于阻塞式编程。而SpringCloudGateway则是基于Spring5中提供的WebFlux,属于响应式编程的实现,具备更好的性能。

6.1 GateWay使用

下面,我们就演示下网关的基本路由功能。基本步骤如下:

  1. 创建SpringBoot工程gateway,引入网关依赖
  2. 编写启动类
  3. 编写基础配置和路由规则
  4. 启动网关服务进行测试

引入依赖

创建一个新的module,引入GateWay依赖:

<!--网关-->
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<!--nacos服务发现依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

编写启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class GatewayApplication {
	public static void main(String[] args) {
		SpringApplication.run(GatewayApplication.class, args);
	}
}

编写基础配置和路由规则

创建application.yml文件,内容如下:

server:
  port: 10010 # 网关端口
spring:
  application:
    name: gateway # 服务名称
  cloud:
    nacos:
      server-addr: localhost:8848 # nacos地址
    gateway:
      routes: # 网关路由配置
        - id: user-service # 路由id,自定义,只要唯一即可
          # uri: http://127.0.0.1:8081 # 路由的目标地址 http就是固定地址
          uri: lb://userservice # 路由的目标地址 lb就是负载均衡,后面跟服务名称
          predicates: # 路由断言,也就是判断请求是否符合路由规则的条件
            - Path=/user/** # 这个是按照路径匹配,只要以/user/开头就符合要求

我们将符合Path 规则的一切请求,都代理到 uri参数指定的地址。

访问流程图

整个访问的流程如下:

在这里插入图片描述

总结

总结:

网关搭建步骤:

  1. 创建项目,引入nacos服务发现和gateway依赖

  2. 配置application.yml,包括服务基本信息、nacos地址、路由

路由配置包括:

  1. 路由id:路由的唯一标示

  2. 路由目标(uri):路由的目标地址,http代表固定地址,lb代表根据服务名负载均衡

  3. 路由断言(predicates):判断路由的规则,

  4. 路由过滤器(filters):对请求或响应做处理

6.2 断言工厂

我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件。

例如Path=/user/**是按照路径匹配,这个规则是由

org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory类来

处理的,像这样的断言工厂在SpringCloudGateway还有十几个:

名称说明示例
After是某个时间点后的请求- After=2037-01-20T17:42:47.789-07:00[America/Denver]
Before是某个时间点之前的请求- Before=2031-04-13T15:14:47.433+08:00[Asia/Shanghai]
Between是某两个时间点之前的请求- Between=2037-01-20T17:42:47.789-07:00[America/Denver], 2037-01-21T17:42:47.789-07:00[America/Denver]
Cookie请求必须包含某些cookie- Cookie=chocolate, ch.p
Header请求必须包含某些header- Header=X-Request-Id, \d+
Host请求必须是访问某个host(域名)- Host=.somehost.org,.anotherhost.org
Method请求方式必须是指定方式- Method=GET,POST
Path请求路径必须符合指定规则- Path=/red/{segment},/blue/**
Query请求参数必须包含指定参数- Query=name, Jack或者- Query=name
RemoteAddr请求者的ip必须是指定范围- RemoteAddr=192.168.1.1/24
Weight权重处理

我们只需要了解Path这种路由工程就可以了。

6.3 过滤器工厂

GatewayFilter是网关中提供的一种过滤器,可以对进入网关的请求和微服务返回的响应做处理:

在这里插入图片描述

路由过滤器的种类

Spring提供了31种不同的路由过滤器工厂。例如:

名称说明
AddRequestHeader给当前请求添加一个请求头
RemoveRequestHeader移除请求中的一个请求头
AddResponseHeader给响应结果中添加一个响应头
RemoveResponseHeader从响应结果中移除有一个响应头
RequestRateLimiter限制请求的流量

配置路由过滤器

下面我们以AddRequestHeader 为例来讲解。

需求:给所有进入userservice的请求添加一个请求头:Truth=itcast is freaking awesome!

只需要修改gateway服务的application.yml文件,添加路由过滤即可:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/** 
        filters: # 过滤器
        - AddRequestHeader=Truth, Itcast is freaking awesome! # 添加请求头

当前过滤器写在userservice路由下,因此仅仅对访问userservice的请求有效。

默认过滤器

如果要对所有的路由都生效,则可以将过滤器工厂写到default下。格式如下:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/**
      default-filters: # 默认过滤项
      - AddRequestHeader=Truth, Itcast is freaking awesome!

过滤器的作用是什么?

  • 对路由的请求或响应做加工处理,比如添加请求头
  • 配置在路由下的过滤器只对当前路由的请求生效

defaultFilters的作用是什么?

  • 对所有路由都生效的过滤器

6.4 全局过滤器

作用

全局过滤器的作用也是处理一切进入网关的请求和微服务响应,与GatewayFilter的作用一样。区别在于GatewayFilter通过配置定义,处理逻辑是固定的;而GlobalFilter的逻辑需要自己写代码实现。

定义方式是实现GlobalFilter接口。

public interface GlobalFilter {
    /**
     *  处理当前请求,有必要的话通过{@link GatewayFilterChain}将请求交给下一个过滤器处理
     *
     * @param exchange 请求上下文,里面可以获取Request、Response等信息
     * @param chain 用来把请求委托给下一个过滤器 
     * @return {@code Mono<Void>} 返回标示当前过滤器业务结束
     */
    Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
}

自定义全局过滤器

需求:定义全局过滤器,拦截请求,判断请求的参数是否满足下面条件:

  • 参数中是否有authorization,

  • authorization参数值是否为admin

如果同时满足则放行,否则拦截

实现:

在gateway中定义一个过滤器:

import org.springframework.cloud.gateway.filter.GatewayFilterChain;
import org.springframework.cloud.gateway.filter.GlobalFilter;
import org.springframework.core.annotation.Order;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;

@Order(-1)
@Component
public class AuthorizeFilter implements GlobalFilter {
    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        // 1.获取请求参数
        MultiValueMap<String, String> params = exchange.getRequest().getQueryParams();
        // 2.获取authorization参数
        String auth = params.getFirst("authorization");
        // 3.校验
        if ("admin".equals(auth)) {
            // 放行
            return chain.filter(exchange);
        }
        // 4.拦截
        // 4.1.禁止访问,设置状态码
        exchange.getResponse().setStatusCode(HttpStatus.FORBIDDEN);
        // 4.2.结束处理
        return exchange.getResponse().setComplete();
    }
}

过滤器执行顺序

请求进入网关会碰到三类过滤器:当前路由的过滤器DefaultFilterGlobalFilter

请求路由后,会将当前路由过滤器和DefaultFilter、GlobalFilter,合并到一个过滤器链(集合)中,排序后依次执行每个过滤器:

在这里插入图片描述

排序的规则是什么呢?

  • 每一个过滤器都必须指定一个int类型的order值,order值越小,优先级越高,执行顺序越靠前
  • GlobalFilter通过实现Ordered接口,或者添加@Order注解来指定order值,由我们自己指定
  • 路由过滤器和defaultFilter的order由Spring指定,默认是按照声明顺序从1递增。
  • 当过滤器的order值一样时,会按照 defaultFilter > 路由过滤器 > GlobalFilter的顺序执行。

我们可以通过查看源码来进行过滤器执行顺序的分析:

    // org.springframework.cloud.gateway.route.RouteDefinitionRouteLocator#getFilters
    private List<GatewayFilter> getFilters(RouteDefinition routeDefinition) {
        List<GatewayFilter> filters = new ArrayList();
        // 先加载defaultFilter过滤器
        if (!this.gatewayProperties.getDefaultFilters().isEmpty()) {
            filters.addAll(this.loadGatewayFilters("defaultFilters", new ArrayList(this.gatewayProperties.getDefaultFilters())));
        }
		// 再加载方法传入的过滤器
        if (!routeDefinition.getFilters().isEmpty()) {
            filters.addAll(this.loadGatewayFilters(routeDefinition.getId(), new ArrayList(routeDefinition.getFilters())));
        }
		// 根据order排序
        AnnotationAwareOrderComparator.sort(filters);
        return filters;
    }
   	// org.springframework.cloud.gateway.handler.FilteringWebHandler#handle
	public Mono<Void> handle(ServerWebExchange exchange) {
        Route route = (Route)exchange.getRequiredAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
        List<GatewayFilter> gatewayFilters = route.getFilters();
        // 加载全局过滤器,合并
        List<GatewayFilter> combined = new ArrayList(this.globalFilters);
        combined.addAll(gatewayFilters);
        // 根据order排序
        AnnotationAwareOrderComparator.sort(combined);
        if (logger.isDebugEnabled()) {
            logger.debug("Sorted gatewayFilterFactories: " + combined);
        }

        return (new DefaultGatewayFilterChain(combined)).filter(exchange);
    }

6.5 跨域问题

什么是跨域问题

跨域:域名不一致就是跨域,主要包括:

  • 域名不同: www.taobao.com 和 www.taobao.org 和 www.jd.com 和 miaosha.jd.com

  • 域名相同,端口不同:localhost:8080和localhost8081

跨域问题:浏览器禁止请求的发起者与服务端发生跨域ajax请求,请求被浏览器拦截的问题

解决方案:CORS。

解决跨域问题

在gateway服务的application.yml文件中,添加下面的配置:

spring:
  cloud:
    gateway:
      # 。。。
      globalcors: # 全局的跨域处理
        add-to-simple-url-handler-mapping: true # 解决options请求被拦截问题
        corsConfigurations:
          '[/**]':
            allowedOrigins: # 允许哪些网站的跨域请求 
              - "http://localhost:8090"
            allowedMethods: # 允许的跨域ajax的请求方式
              - "GET"
              - "POST"
              - "DELETE"
              - "PUT"
              - "OPTIONS"
            allowedHeaders: "*" # 允许在请求中携带的头信息
            allowCredentials: true # 是否允许携带cookie
            maxAge: 360000 # 这次跨域检测的有效期

6.6 限流过滤器

限流:对应用服务器的请求做限制,避免因过多请求而导致服务器过载甚至宕机。

限流算法常见的包括以下几种:

  • 计数器算法,又包括窗口计数器算法、滑动窗口计数器算法
  • 漏桶算法(Leaky Bucket)
  • 令牌桶算法(Token Bucket)

计数器算法

固定窗口计数器算法概念如下:

将时间划分为多个窗口:

  • 在每个窗口内每有一次请求就将计数器加一,当时间到达下一个窗口时,计数器重置。
  • 如果计数器超过了限制数量,则本窗口内所有的请求都被丢弃。

在这里插入图片描述

漏桶算法

漏桶算法说明:

  • 将每个请求视作"水滴"放入"漏桶"进行存储;
  • "漏桶"以固定速率向外"漏"出请求来执行,如果"漏桶"空了则停止"漏水”;
  • 如果"漏桶"满了则多余的"水滴"会被直接丢弃。

在这里插入图片描述

令牌桶算法

漏桶算法说明:

  • 以固定的速率生成令牌,存入令牌桶中,如果令牌桶满了以后,多余令牌丢弃
  • 请求进入后,必须先尝试从桶中获取令牌,获取到令牌后才可以被处理
  • 如果令牌桶中没有令牌,则请求等待或丢弃

在这里插入图片描述

写在最后

这里是SpringCloud以及相关中间件的使用,是接触微服务的入门教程,之后还会分享更为详细以及深入的知识,敬请期待!

文章来源:https://blog.csdn.net/qq_52805594/article/details/135540241
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。