任何的程序设计都包含IPO,它们分别代表如下:
I:Input 输入,程序的输入
P:Process 处理,程序的主要逻辑过程
O:Output 输出,程序的输出
因此如果想要通过计算机实现某个功能,那么基本的程序设计模式包含三个部分,如下:
确定IPO:明确需要实现功能的输入和输出,以及主要的实现逻辑过程;
编写程序:将计算求解的逻辑过程通过编程语言进行设计展示;
调试程序:对编写的程序按照逻辑过程进行调试,确保程序按照正确逻辑正确运行。
如果要实现功能的逻辑比较复杂的时候,就需要对其进行模块化设计,将复杂问题进行分解,转化为多个简单问题,其中简单问题又可以继续分解为更加简单的问题,直到功能逻辑可以通过模块程序设计实现,这也是程序设计的自顶向下特点。总结如下:
自顶向下的方式其实就是使用递归来求解子问题,最终解只需要调用递归式,子问题逐步往下层递归的求解。
程序设计:
cache = {}
def fib(number):
if number in cache:
return cache[number]
if number == 0 or number == 1:
return 1
else:
cache[number] = fib(number - 1) + fib(number - 2)
return cache[number]
if __name__ == '__main__':
print(fib(35))
运行结果:
自底向上(执行)就是一种逐步组建复杂系统的有效测试方法。首先将需要解决的问题分为各个三元进行测试,接着按照自顶向下相反的路径进行操作,然后对各个单元进行逐步组装,直至系统各
部分以组装的思路都经过测试和验证。
理解自底向上的执行思维:模块化集成
自底向上分析思想:
自底向上是?种求解动态规划问题的方法,它不使用递归式,而是直接使用循环来计算所有可能的结果,往上层逐渐累加子问题的解。在求解子问题的最优解的同时,也相当于是在求解整个问题的最优解。其中最难的部分是找到求解最终问题的递归关系式,或者说状态转移方程。
14930352
>>>
理解自顶向下的设计思维:分而治之
?先要做的就是要找到“子问题”是什么。通过分析发现:每次背包新装进?个物品就可以把剩余的承重能力作为?个新的背包来求解,?直递推到承重为0的背包问题。
用?m[i,w]?表示偷到商品的总价值,其中?i?表示?共多少个商品,w?表示总重量,所以求解 m[i,w]就是子问题,那么看到某?个商品i的时候,如何决定是不是要装进背包,需要考虑以下:
由以上的分析,可以得出m[i,w]的状态转移方程为:
# 循环的?式,自底向上求解
cache = {}
items = range(1,9)
weights = [10,1,5,9,10,7,3,12,5]
values = [10,20,30,15,40,6,9,12,18]
# 最?承重能?
W = 4
def knapsack():
for w in range(W+1):
cache[get_key(0,w)] = 0
for i in items:
cache[get_key(i,0)] = 0
for w in range(W+1):
if w >= weights[i]:
if cache[get_key(i-1,w-weights[i])] + values[i] > cache[get_key(i-1,w)]:
cache[get_key(i,w)] = values[i] + cache[get_key(i-1,w-weights[i])]
else:
cache[get_key(i,w)] = cache[get_key(i-1,w)]
else:
cache[get_key(i,w)] = cache[get_key(i-1,w)]
return cache[get_key(8,W)]
def get_key(i,w):
return str(i)+','+str(w)
if __name__ == '__main__':
# 背包把所有东西都能装进去做假设开始
print(knapsack())
29
>>>