目录
混沌映射算法是我们在智能算法改进中常用到的方法,本程序充分考虑改进算法应用的便捷性,集成了11种混合映射算法,包括Singer、tent、Logistic、Cubic、chebyshev、Piecewise、sinusoidal、Sine、ICMIC、Circle、Bernoulli,基本涵盖了常用到的全部混合映射算法,并采用两种智能算法——鲸鱼WOA和灰狼GWO算法进行改进示范,得到优化前和优化后的对比结果,该程序可方便更换不同映射算法,通过两种算法示范方便新手学习,改进算法可轻松嫁接于其他智能算法中,是不可多得的学习资料!
1.为了验证智能算法优劣,需要消除随机性的影响,因此一般考量智能算法的平均值和方差等统计指标,因此大家不要拿单一运行结果作为算法优劣的判据,当然在结果整理中可取效果较好的某次结果作为效果图。
2.混沌映射算法有具体的参数限制,在应用过程中可能需要修正参数才能达到较好的效果,使用过程中建议和其他改进算法结合,如非线性惯性权重、柯西变异等,综合改进算法效果一般要优于单一方法。
% initialize position vector and score for the leader Leader_pos=zeros(1,dim); Leader_score=inf; %change this to -inf for maximization problems ? ? %Initialize the positions of search agents % Positions=initialization(SearchAgents_no,dim,ub,lb); Positions = repmat(lb, SearchAgents_no, 1)+ialgo(numm,SearchAgents_no,dim) .* repmat((ub-lb), SearchAgents_no, 1); ? Convergence_curve=zeros(1,Max_iter); ? t=0;% Loop counter ? % Main loop while tfor i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitnessthis to > for maximization problem Leader_score=fitness; % Update alpha Leader_pos=Positions(i,:); end end
见下方联系方式。