这一步主要就是确定分代(新生代和老年代)信息、即将分配的Java堆内存的大小,以及针对这些信息的校验
virtual void initialize_all() {
// 针对内存分配的大小值做设置和校验
CollectorPolicy::initialize_all();
// 创建并分配新生代和老年代对象的内存
initialize_generations();
}
// 对应 CollectorPolicy::initialize_all() 函数
virtual void initialize_all() {
// 父类中,这是一个纯虚函数(相当于Java里面的抽象函数),只能去子类中找实现,这个函数就是计算即将要创建和分配的内存的对齐值
initialize_alignments();
// 对 Java堆大小值的判断和设置
initialize_flags();
// 对以上两步产生的大小做参数检验
initialize_size_info();
}
// 对应 initialize_alignments() 函数
void MarkSweepPolicy::initialize_alignments() {
/*
* 设置空间和分代对齐(C/C++中分配内存时都需要按着一定大小对齐),对齐的目的就是为了提高内存访问效率,CPU读取内存时不是一个一个字节读的,而是一批字节来读,比如4字节、8字节和64字节等,具体读多少,与CPU的架构、型号、年份有关,现在的机器基本是读64字节(缓存行大小),如果没按对齐规则对齐,就可能读取到的内存是“半包”,这就需要CPU多次读取,效率较低。这里按Generation::GenGrain对齐,这个值定义在generattion.hpp的枚举中
enum SomePublicConstants {
LogOfGenGrain = 16 ARM32_ONLY(+1), // 最终得出结果16
GenGrain = 1 << LogOfGenGrain // 1 << 16 ==> 2^16 ==> 64 * k
};
通过上面的定义可知,_space_alignment和_gen_alignment的值最终就是64*k,也就是按这个值来对齐
*/
_space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
_heap_alignment = compute_heap_alignment(); // 计算堆空间的对齐值,最终=512 * 4K
}
// 对应 compute_heap_alignment() 函数
size_t CollectorPolicy::compute_heap_alignment() {
// 这里就是按CardTable卡表的大小乘以页大小来对齐的,查看源码可以得出,卡表大小card_size=1 << 9 ==> 2^9 ==> 512,最终对齐大小等于:512 * 4K(page_size)
size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
if (UseLargePages) { // 用大页,这种情况,忽略
alignment = lcm(os::large_page_size(), alignment);
}
return alignment;
}
// 对应 initialize_flags() 函数
void CollectorPolicy::initialize_flags() {
// 检验上一步计算的各空间对齐值不为0
assert(_space_alignment != 0, "Space alignment not set up properly");
assert(_heap_alignment != 0, "Heap alignment not set up properly");
assert(_heap_alignment >= _space_alignment,
err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
_heap_alignment, _space_alignment));
assert(_heap_alignment % _space_alignment == 0,
err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
_heap_alignment, _space_alignment));
// 检查空间大小限制,InitialHeapSize和MaxHeapSize的值在`章节8.1.1.2`中做了解析,有兴趣的,再回头看看
if (FLAG_IS_CMDLINE(MaxHeapSize)) {
if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
}
if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
}
_max_heap_size_cmdline = true;
}
// 初始堆大小不能小于1M
if (InitialHeapSize < M) {
vm_exit_during_initialization("Too small initial heap");
}
// 最小堆大小不能小于1M
if (_min_heap_byte_size < M) {
vm_exit_during_initialization("Too small minimum heap");
}
// 用 用户从 -Xmx and -Xms 设置的值,并通过_heap_alignment的大小对齐,得到最小堆大小、初始堆大小、最大堆大小
_min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
// 值改变了,就写回对应的flags中,这块的设置看`章节8.1.1.3`
if (aligned_initial_heap_size != InitialHeapSize) {
FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
}
if (aligned_max_heap_size != MaxHeapSize) {
FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
}
if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
InitialHeapSize < _min_heap_byte_size) {
vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
}
if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
} else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
if (InitialHeapSize < _min_heap_byte_size) {
_min_heap_byte_size = InitialHeapSize;
}
}
_initial_heap_byte_size = InitialHeapSize;
_max_heap_byte_size = MaxHeapSize;
FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
DEBUG_ONLY(CollectorPolicy::assert_flags();)
}
// 分代初始化,默认分成两代(年轻和老年代)
void MarkSweepPolicy::initialize_generations() {
// 通过malloc() 库函数分配内存,并得到一个大小为2的分代数组,分别存放年轻代和老年代GenerationSpec,number_of_generations() 这个函数里面写死了返回2
_generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, CURRENT_PC,
AllocFailStrategy::RETURN_NULL);
if (_generations == NULL) {
vm_exit_during_initialization("Unable to allocate gen spec");
}
if (UseParNewGC) {
_generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
} else {
// 串行GC的,走这条线,创建新生代GenerationSpec对象,对象内存都是通过malloc()来分配的
_generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
}
// 创建老年代GenerationSpec对象
_generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
if (_generations[0] == NULL || _generations[1] == NULL) {
vm_exit_during_initialization("Unable to allocate gen spec");
}
}
GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
SharedHeap(policy), // 先调用父类SharedHeap构造函数,看`章节17.3.1.2`
_gen_policy(policy), // _gen_policy 赋值为 policy
// 创建一个子任务管理类,管理所有子任务,并赋值给_process_strong_tasks
_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
_full_collections_completed(0) // _full_collections_completed 赋值
{
assert(policy != NULL, "Sanity check");
}
SharedHeap::SharedHeap(CollectorPolicy* policy_) :
CollectedHeap(), // 继续调用上级构造函数
_collector_policy(policy_), // 以下为赋值操作
_rem_set(NULL),
_strong_roots_parity(0),
_workers(NULL)
{
_sh = this; // ch is static, should be set only once.
// 由于我们讨论的是串行的GC收集器,所以下面这个逻辑不会走,忽略
if ((UseParNewGC ||
(UseConcMarkSweepGC && (CMSParallelInitialMarkEnabled ||
CMSParallelRemarkEnabled)) ||
UseG1GC) &&
ParallelGCThreads > 0) {
_workers = new FlexibleWorkGang("Parallel GC Threads", ParallelGCThreads,
/* are_GC_task_threads */true,
/* are_ConcurrentGC_threads */false);
if (_workers == NULL) {
vm_exit_during_initialization("Failed necessary allocation.");
} else {
_workers->initialize_workers();
}
}
}
CollectedHeap::CollectedHeap() : _n_par_threads(0) // 赋值
{
// 下面这几步就是得到最大数组的大小,用于后期判断一个对象最大占用内存大小的限制
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
const size_t elements_per_word = HeapWordSize / sizeof(jint);
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
max_len / elements_per_word);
// 以下都是赋初始值操作
_barrier_set = NULL;
_is_gc_active = false;
_total_collections = _total_full_collections = 0;
_gc_cause = _gc_lastcause = GCCause::_no_gc;
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
if (UsePerfData) { // 有关性能数据的,先忽略,以后有机会再单开一个专题来讲
EXCEPTION_MARK;
// create the gc cause jvmstat counters
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
80, GCCause::to_string(_gc_cause), CHECK);
_perf_gc_lastcause =
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
80, GCCause::to_string(_gc_lastcause), CHECK);
}
_defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
// gc日志事件
if (LogEvents) {
_gc_heap_log = new GCHeapLog();
} else {
_gc_heap_log = NULL;
}
}