最近学习大数据的知识,需要做一些有关Hadoop MapReduce
的实验
实验内容是在sogou.500w.utf8
数据的基础上进行的。
实现以下内容:
该实验是在已经搭建好Hadoop集群的基础上进行的,如果还没有搭建,请参考以下文章进行集群搭建
数据的字段说明
上传数据
创建目录
hdfs dfs -mkdir /homework
上传文件
hdfs dfs -put -p sogou.500w.utf8 /homework
1、Mapper
package com.csust.homework1;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class TaskMapper1 extends Mapper<LongWritable, Text, Text, Text> {
Text outputK = new Text();
Text outputV = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split("\t");
if (words[2].contains("仙剑奇侠传")) {
outputK.set(words[1]);
outputV.set(words[2]);
context.write(outputK, outputV);
}
}
}
2、Reduce
package com.csust.homework1;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class TaskReducer1 extends Reducer<Text,Text,Text,Text> {
Text outputV = new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException {
StringBuilder total= new StringBuilder();
for (Text value : values) {
total.append(value.toString());
total.append("\t");
}
outputV.set(total.toString());
context.write(key,outputV);
}
}
3、Driver
package com.csust.homework1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TaskDriver1 {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1:创建一个job任务对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//如果打包运行出错,则需要加该配置
job.setJarByClass(TaskDriver1.class);
job.setMapperClass(TaskMapper1.class);
job.setReducerClass(TaskReducer1.class);
//设置Mapper输出
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//设置最终输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//设置路径
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/homework"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/homework1_out"));
//提交任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
4、程序运行
5、运行结果
1、Mapper
package com.csust.homework2;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class TaskMapper2 extends Mapper<LongWritable, Text, Text, IntWritable> {
Text outK = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
String data = value.toString();
String[] words = data.split("\t");
if (Integer.parseInt(words[3])<3 && Integer.parseInt(words[4])>2) {
outK.set(words[1]);
context.write(outK, new IntWritable(1));
}
}
}
2、Reduce
package com.csust.homework2;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class TaskReducer2 extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int total = 0;
for (IntWritable value : values) {
total += value.get();
}
context.write(key,new IntWritable(total));
}
}
3、Driver
package com.csust.homework2;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TaskDriver2 {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建一个job任务对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//如果打包运行出错,则需要加该配置
job.setJarByClass(TaskDriver2.class);
// 关联Mapper和Reducer的jar
job.setMapperClass(TaskMapper2.class);
job.setReducerClass(TaskReducer2.class);
//设置Mapper输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/homework"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/homework2_out"));
//提交任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
4、运行程序
5、运行结果
1、Mapper
package com.csust.homework3;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;
public class TaskMapper3 extends Mapper<LongWritable, Text, Text, Text> {
Text outputK = new Text();
Text outputV = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split("\t");
SimpleDateFormat format = new SimpleDateFormat("yyyyMMddHHmmss");
try {
Date time = format.parse(words[0]);
Calendar calendar = Calendar.getInstance();
calendar.setTime(time);
int hour = calendar.get(Calendar.HOUR_OF_DAY);
if (hour >= 7 && hour < 9) {
if (words[2].contains("赶集网")) {
//UID
outputK.set(words[1]);
outputV.set(words[2]);
context.write(outputK, outputV);
}
}
} catch (ParseException e) {
e.printStackTrace();
}
}
}
2、Reduce
package com.csust.homework3;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class TaskReducer3 extends Reducer<Text,Text,Text,Text> {
Text outputV = new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException {
StringBuilder total= new StringBuilder();
for (Text value : values) {
total.append(value.toString());
total.append("\t");
}
outputV.set(total.toString());
context.write(key,outputV);
}
}
3、Driver
package com.csust.homework3;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TaskDriver3 {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建一个job任务对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//如果打包运行出错,则需要加该配置
job.setJarByClass(TaskDriver3.class);
// 关联Mapper和Reducer的jar
job.setMapperClass(TaskMapper3.class);
job.setReducerClass(TaskReducer3.class);
//设置Mapper输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/homework"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/homework3_out"));
//提交任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
4、 运行程序
5、运行结果
1、Mapper
package com.csust.sort;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class TaskMapper4 extends Mapper<LongWritable, Text, IntWritable, Text> {
Text outputV = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, IntWritable, Text>.Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split("\t");
IntWritable outputK = new IntWritable(Integer.parseInt(words[3]));
List<String> list = new ArrayList<String>(Arrays.asList(words));
list.remove(3);
String data = String.join("\t", list);
outputV.set(data);
context.write(outputK, outputV);
}
}
2、Reduce
package com.csust.sort;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class TaskReducer4 extends Reducer<IntWritable, Text, Text, IntWritable> {
@Override
protected void reduce(IntWritable key, Iterable<Text> values, Reducer<IntWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
for (Text value : values) {
context.write(value, key);
}
}
}
3、Driver
package com.csust.sort;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class TaskDriver4 {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建一个job任务对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//如果打包运行出错,则需要加该配置
job.setJarByClass(TaskDriver4.class);
// 关联Mapper和Reducer的jar
job.setMapperClass(TaskMapper4.class);
job.setReducerClass(TaskReducer4.class);
//设置Mapper输出的kv类型
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class);
//设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 设置排序方式
job.setSortComparatorClass(MyComparator.class);
//设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000/homework"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/homework4_out"));
//提交任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
4、Commparator
package com.csust.sort;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.WritableComparable;
public class MyComparator extends IntWritable.Comparator{
public int compare(WritableComparable a, WritableComparable b) {
return -super.compare(a, b);
}
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return -super.compare(b1, s1, l1, b2, s2, l2);
}
}
5、运行程序
6、 运行结果