NLP电影情绪分析项目

发布时间:2024年01月05日

https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-review-sentiment/
https://machinelearningmastery.com/prepare-movie-review-data-sentiment-analysis/

本教程分为 5 个部分;他们是:

  1. 电影评论数据集
  2. 数据准备
  3. 训练嵌入层
  4. 训练 word2vec 嵌入
  5. 使用预训练嵌入

数据准备

1.将数据分为训练集和测试集。
2.加载和清理数据以删除标点符号和数字。
3.定义首选单词的词汇表。

在空白处拆分标记。
删除单词中的所有标点符号。
删除所有不完全由字母字符组成的单词。
删除所有已知停用词的单词。
删除长度为 <= 1 个字符的所有单词。

我们可以使用字符串 translate() 函数从标记中过滤掉标点符号。
我们可以通过对每个标记使用 isalpha() 检查来删除只是标点符号或包含数字的标记。
我们可以使用使用 NLTK 加载的列表删除英语停用词。
我们可以通过检查短标记的长度来过滤掉它们。

from string import punctuation
from os import listdir
from collections import Counter
from nltk.corpus import stopwords

# load doc into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# turn a doc into clean tokens
def clean_doc(doc):
	# split into tokens by white space
	tokens = doc.split()
	# remove punctuation from each token
	table = str.maketrans('', '', punctuation)
	tokens = [w.translate(table) for w in tokens]
	# remove remaining tokens that are not alphabetic
	tokens = [word for word in tokens if word.isalpha()]
	# filter out stop words
	stop_words = set(stopwords.words('english'))
	tokens = [w for w in tokens if not w in stop_words]
	# filter out short tokens
	tokens = [word for word in tokens if len(word) > 1]
	return tokens

# load doc and add to vocab
def add_doc_to_vocab(filename, vocab):
	# load doc
	doc = load_doc(filename)
	# clean doc
	tokens = clean_doc(doc)
	# update counts
	vocab.update(tokens)

# load all docs in a directory
def process_docs(directory, vocab, is_trian):
	# walk through all files in the folder
	for filename in listdir(directory):
		# skip any reviews in the test set
		if is_trian and filename.startswith('cv9'):
			continue
		if not is_trian and not filename.startswith('cv9'):
			continue
		# create the full path of the file to open
		path = directory + '/' + filename
		# add doc to vocab
		add_doc_to_vocab(path, vocab)

# define vocab
vocab = Counter()
# add all docs to vocab
process_docs('txt_sentoken/neg', vocab, True)
process_docs('txt_sentoken/pos', vocab, True)
# print the size of the vocab
print(len(vocab))
# print the top words in the vocab
print(vocab.most_common(50))

使用 Counter() 进行统计和去重

保存

# save list to file
def save_list(lines, filename):
	# convert lines to a single blob of text
	data = '\n'.join(lines)
	# open file
	file = open(filename, 'w')
	# write text
	file.write(data)
	# close file
	file.close()

# save tokens to a vocabulary file
save_list(tokens, 'vocab.txt')

训练嵌入层

https://machinelearningmastery.com/what-are-word-embeddings/

from string import punctuation
from os import listdir
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

# load doc into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# turn a doc into clean tokens
def clean_doc(doc, vocab):
	# split into tokens by white space
	tokens = doc.split()
	# remove punctuation from each token
	table = str.maketrans('', '', punctuation)
	tokens = [w.translate(table) for w in tokens]
	# filter out tokens not in vocab
	tokens = [w for w in tokens if w in vocab]
	tokens = ' '.join(tokens)
	return tokens

# load all docs in a directory
def process_docs(directory, vocab, is_trian):
	documents = list()
	# walk through all files in the folder
	for filename in listdir(directory):
		# skip any reviews in the test set
		if is_trian and filename.startswith('cv9'):
			continue
		if not is_trian and not filename.startswith('cv9'):
			continue
		# create the full path of the file to open
		path = directory + '/' + filename
		# load the doc
		doc = load_doc(path)
		# clean doc
		tokens = clean_doc(doc, vocab)
		# add to list
		documents.append(tokens)
	return documents

# load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

# load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

# create the tokenizer
tokenizer = Tokenizer()
# fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

# sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
# pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

# load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
# sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
# pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

# define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

# define model
model = Sequential()
model.add(Embedding(vocab_size, 100, input_length=max_length))
model.add(Conv1D(filters=32, kernel_size=8, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
# compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
# evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

训练 word2vec 嵌入

在这里插入图片描述

word2vec 算法逐句处理文档。这意味着我们将在清理过程中保留基于句子的结构。

from string import punctuation
from os import listdir
from gensim.models import Word2Vec

# load doc into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# turn a doc into clean tokens
def doc_to_clean_lines(doc, vocab):
	clean_lines = list()
	lines = doc.splitlines()
	for line in lines:
		# split into tokens by white space
		tokens = line.split()
		# remove punctuation from each token
		table = str.maketrans('', '', punctuation)
		tokens = [w.translate(table) for w in tokens]
		# filter out tokens not in vocab
		tokens = [w for w in tokens if w in vocab]
		clean_lines.append(tokens)
	return clean_lines

# load all docs in a directory
def process_docs(directory, vocab, is_trian):
	lines = list()
	# walk through all files in the folder
	for filename in listdir(directory):
		# skip any reviews in the test set
		if is_trian and filename.startswith('cv9'):
			continue
		if not is_trian and not filename.startswith('cv9'):
			continue
		# create the full path of the file to open
		path = directory + '/' + filename
		# load and clean the doc
		doc = load_doc(path)
		doc_lines = doc_to_clean_lines(doc, vocab)
		# add lines to list
		lines += doc_lines
	return lines

# load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

# load training data
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
sentences = negative_docs + positive_docs
print('Total training sentences: %d' % len(sentences))

# train word2vec model
model = Word2Vec(sentences, size=100, window=5, workers=8, min_count=1)
# summarize vocabulary size in model
words = list(model.wv.vocab)
print('Vocabulary size: %d' % len(words))

# save model in ASCII (word2vec) format
filename = 'embedding_word2vec.txt'
model.wv.save_word2vec_format(filename, binary=False)
from string import punctuation
from os import listdir
from numpy import array
from numpy import asarray
from numpy import zeros
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

# load doc into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# turn a doc into clean tokens
def clean_doc(doc, vocab):
	# split into tokens by white space
	tokens = doc.split()
	# remove punctuation from each token
	table = str.maketrans('', '', punctuation)
	tokens = [w.translate(table) for w in tokens]
	# filter out tokens not in vocab
	tokens = [w for w in tokens if w in vocab]
	tokens = ' '.join(tokens)
	return tokens

# load all docs in a directory
def process_docs(directory, vocab, is_trian):
	documents = list()
	# walk through all files in the folder
	for filename in listdir(directory):
		# skip any reviews in the test set
		if is_trian and filename.startswith('cv9'):
			continue
		if not is_trian and not filename.startswith('cv9'):
			continue
		# create the full path of the file to open
		path = directory + '/' + filename
		# load the doc
		doc = load_doc(path)
		# clean doc
		tokens = clean_doc(doc, vocab)
		# add to list
		documents.append(tokens)
	return documents

# load embedding as a dict
def load_embedding(filename):
	# load embedding into memory, skip first line
	file = open(filename,'r')
	lines = file.readlines()[1:]
	file.close()
	# create a map of words to vectors
	embedding = dict()
	for line in lines:
		parts = line.split()
		# key is string word, value is numpy array for vector
		embedding[parts[0]] = asarray(parts[1:], dtype='float32')
	return embedding

# create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):
	# total vocabulary size plus 0 for unknown words
	vocab_size = len(vocab) + 1
	# define weight matrix dimensions with all 0
	weight_matrix = zeros((vocab_size, 100))
	# step vocab, store vectors using the Tokenizer's integer mapping
	for word, i in vocab.items():
		weight_matrix[i] = embedding.get(word)
	return weight_matrix

# load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

# load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

# create the tokenizer
tokenizer = Tokenizer()
# fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

# sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
# pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

# load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
# sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
# pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

# define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

# load embedding from file
raw_embedding = load_embedding('embedding_word2vec.txt')
# get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
# create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, trainable=False)

# define model
model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
# compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
# evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))

预训练嵌入

from string import punctuation
from os import listdir
from numpy import array
from numpy import asarray
from numpy import zeros
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Embedding
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D

# load doc into memory
def load_doc(filename):
	# open the file as read only
	file = open(filename, 'r')
	# read all text
	text = file.read()
	# close the file
	file.close()
	return text

# turn a doc into clean tokens
def clean_doc(doc, vocab):
	# split into tokens by white space
	tokens = doc.split()
	# remove punctuation from each token
	table = str.maketrans('', '', punctuation)
	tokens = [w.translate(table) for w in tokens]
	# filter out tokens not in vocab
	tokens = [w for w in tokens if w in vocab]
	tokens = ' '.join(tokens)
	return tokens

# load all docs in a directory
def process_docs(directory, vocab, is_trian):
	documents = list()
	# walk through all files in the folder
	for filename in listdir(directory):
		# skip any reviews in the test set
		if is_trian and filename.startswith('cv9'):
			continue
		if not is_trian and not filename.startswith('cv9'):
			continue
		# create the full path of the file to open
		path = directory + '/' + filename
		# load the doc
		doc = load_doc(path)
		# clean doc
		tokens = clean_doc(doc, vocab)
		# add to list
		documents.append(tokens)
	return documents

# load embedding as a dict
def load_embedding(filename):
	# load embedding into memory, skip first line
	file = open(filename,'r')
	lines = file.readlines()
	file.close()
	# create a map of words to vectors
	embedding = dict()
	for line in lines:
		parts = line.split()
		# key is string word, value is numpy array for vector
		embedding[parts[0]] = asarray(parts[1:], dtype='float32')
	return embedding

# create a weight matrix for the Embedding layer from a loaded embedding
def get_weight_matrix(embedding, vocab):
	# total vocabulary size plus 0 for unknown words
	vocab_size = len(vocab) + 1
	# define weight matrix dimensions with all 0
	weight_matrix = zeros((vocab_size, 100))
	# step vocab, store vectors using the Tokenizer's integer mapping
	for word, i in vocab.items():
		vector = embedding.get(word)
		if vector is not None:
			weight_matrix[i] = vector
	return weight_matrix

# load the vocabulary
vocab_filename = 'vocab.txt'
vocab = load_doc(vocab_filename)
vocab = vocab.split()
vocab = set(vocab)

# load all training reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, True)
negative_docs = process_docs('txt_sentoken/neg', vocab, True)
train_docs = negative_docs + positive_docs

# create the tokenizer
tokenizer = Tokenizer()
# fit the tokenizer on the documents
tokenizer.fit_on_texts(train_docs)

# sequence encode
encoded_docs = tokenizer.texts_to_sequences(train_docs)
# pad sequences
max_length = max([len(s.split()) for s in train_docs])
Xtrain = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define training labels
ytrain = array([0 for _ in range(900)] + [1 for _ in range(900)])

# load all test reviews
positive_docs = process_docs('txt_sentoken/pos', vocab, False)
negative_docs = process_docs('txt_sentoken/neg', vocab, False)
test_docs = negative_docs + positive_docs
# sequence encode
encoded_docs = tokenizer.texts_to_sequences(test_docs)
# pad sequences
Xtest = pad_sequences(encoded_docs, maxlen=max_length, padding='post')
# define test labels
ytest = array([0 for _ in range(100)] + [1 for _ in range(100)])

# define vocabulary size (largest integer value)
vocab_size = len(tokenizer.word_index) + 1

# load embedding from file
raw_embedding = load_embedding('glove.6B.100d.txt')
# get vectors in the right order
embedding_vectors = get_weight_matrix(raw_embedding, tokenizer.word_index)
# create the embedding layer
embedding_layer = Embedding(vocab_size, 100, weights=[embedding_vectors], input_length=max_length, trainable=False)

# define model
model = Sequential()
model.add(embedding_layer)
model.add(Conv1D(filters=128, kernel_size=5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
print(model.summary())
# compile network
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit network
model.fit(Xtrain, ytrain, epochs=10, verbose=2)
# evaluate
loss, acc = model.evaluate(Xtest, ytest, verbose=0)
print('Test Accuracy: %f' % (acc*100))
文章来源:https://blog.csdn.net/weixin_39107270/article/details/135415889
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。