【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck

发布时间:2024年01月19日

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
?更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
26.【基于YOLOv8深度学习的人脸面部表情识别系统27.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
28.【基于YOLOv8深度学习的智能肺炎诊断系统29.【基于YOLOv8深度学习的葡萄簇目标检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

前言

在这里插入图片描述
FasterNet是为了提升网络的推理速度而设计的一种新型的神经网络结构,它比其他网络在各种视觉任务上实现了更高的运行速度,同时对准确性没有降低。本文详细介绍了如何使用FasterNet中的FasterBlock替换YOLOv8的C2fBottleneck模块,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

1.FasterNet简介

论文发表时间:2023.05.21

github地址:https://github.com/JierunChen/FasterNet.
paper地址:https://arxiv.org/abs/2303.03667

在这里插入图片描述

摘要:为了设计快速的神经网络,许多研究都专注于减少浮点运算量(FLOPs)。然而,我们观察到这种FLOPs的减少并不一定导致延迟的相似程度的减少。这主要是因为浮点操作每秒(FLOPS)效率低下。为了实现更快的网络,我们重新审视了流行的操作符,并证明了低FLOPS主要是由于操作符的频繁内存访问,特别是深度卷积。因此,我们提出了一种新颖的部分卷积(PConv),通过同时减少冗余的计算和内存访问来更高效地提取空间特征。在我们的PConv基础上,我们进一步提出了FasterNet,这是一系列新的神经网络,比其他网络在各种视觉任务上实现了更高的运行速度,同时对准确性没有妥协。例如,在ImageNet-1k上,我们小巧的FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍,同时准确率更高2.9%。我们的大型FasterNet-L在GPU上实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上推理吞吐量比Swin-B高出36%,在CPU上节省了37%的计算时间。

论文主要亮点如下:
? 我们指出在实现更快的神经网络时,实现更高的FLOPS比仅仅减少FLOPS更重要。
? 我们引入了一种简单而快速有效的操作符,称为PConv,它有很高的潜力可以取代现有的首选选择DWConv。
? 我们引入了FasterNet,在各种设备上都表现出非常快的运行速度,如GPU、CPU和ARM处理器。
? 我们对各种任务进行了广泛的实验证明了我们的PConv和FasterNet的高速和有效性。

1.1 FasterNet网络结构

在这里插入图片描述

1.2 性能对比

在这里插入图片描述
在这里插入图片描述

2.使用FasterBlock替换C2f中的Bottleneck

替换位置与替换后网络结构示意

C2f中替换的位置
在这里插入图片描述
替换后的YOLOv8网络结构如下:
在这里插入图片描述

定义C2f_Faster

ultralytics/nn/modules/block.py中添加如下代码块,并定义C2f_Faster类:

from timm.models.layers import DropPath


class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div=4, forward='split_cat'):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x):
        # only for inference
        x = x.clone()  # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
        return x

    def forward_split_cat(self, x):
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)
        return x


class Faster_Block(nn.Module):
    def __init__(self,
                 inc,
                 dim,
                 n_div=4,
                 mlp_ratio=2,
                 drop_path=0.1,
                 layer_scale_init_value=0.0,
                 pconv_fw_type='split_cat'
                 ):
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)

        mlp_layer = [
            Conv(dim, mlp_hidden_dim, 1),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]

        self.mlp = nn.Sequential(*mlp_layer)

        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )

        self.adjust_channel = None
        if inc != dim:
            self.adjust_channel = Conv(inc, dim, 1)

        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x):
        if self.adjust_channel is not None:
            x = self.adjust_channel(x)
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x):
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x


class C2f_Faster(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Faster_Block(self.c, self.c) for _ in range(n))

在不同文件导入新建的C2f类

ultralytics/nn/modules/block.py顶部,all中添加刚才创建的类的名称:C2f_Faster,如下图所示:
在这里插入图片描述

同样需要在ultralytics/nn/modules/__init__.py文件,相应位置导入刚出创建的C2f_Faster类。如下图:
在这里插入图片描述

还需要在ultralytics/nn/tasks.py中导入创建的C2f_Faster类,如下图:
在这里插入图片描述

parse_model解析函数中添加C2f_Faster

ultralytics/nn/tasks.pyparse_model解析网络结构的函数中,加入C2f_Faster类,如下图:
在这里插入图片描述

创建新的配置文件c2f_Faster_yolov8.yaml

ultralytics/cfg/models/v8目录下新建c2f_Faster_yolov8.yaml配置文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_Faster, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_Faster, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_Faster, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_Faster, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_Faster, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_Faster, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_Faster, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_Faster, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

新的c2f_Faster_yolov8.yaml配置文件与原yolov8.yaml文件的对比如下:

在这里插入图片描述

加载配置文件并训练

加载c2f_Faster_yolov8.yaml配置文件,并运行train.py训练代码:

#coding:utf-8

from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/c2f_Faster_yolov8.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=250, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train2/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_31.jpeg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')


# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

文章来源:https://blog.csdn.net/qq_42589613/article/details/135686157
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。