[足式机器人]Part4 南科大高等机器人控制课 Ch08 Rigid Body Dynamics

发布时间:2023年12月18日

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang


1. Spatial Vecocity

Given a rigid body with spatial velocity V = ( ω ? , v ? ) \mathcal{V} =\left( \vec{\omega},\vec{v} \right) V=(ω ,v ) , its spatial acceleration (coordinate-free)
A = V ˙ = [ ω ? ˙ v ? ˙ O ] , A = lim ? δ → 0 V ( t + δ ) ? V ( t ) δ \mathcal{A} =\dot{\mathcal{V}}=\left[ \begin{array}{c} \dot{\vec{\omega}}\\ \dot{\vec{v}}_{\mathrm{O}}\\ \end{array} \right] ,\mathcal{A} =\underset{\delta \rightarrow 0}{\lim}\frac{\mathcal{V} \left( t+\delta \right) -\mathcal{V} \left( t \right)}{\delta} A=V˙=[ω ˙v ˙O??],A=δ0lim?δV(t+δ)?V(t)?
Recall that: v ? O \vec{v}_{\mathrm{O}} v O? i sthe velocity of the body-fixed particle coincident with frame origin o o o at the current time t t t

Note : ω ? ˙ \dot{\vec{\omega}} ω ˙ is the angular acceleration of the body

v ? ˙ O \dot{\vec{v}}_{\mathrm{O}} v ˙O? is not the acceleration of any body-fixed point ! v ? O = R ? ˙ q ( t ) , v ? ˙ O ≠ R ? ¨ q ( t ) \vec{v}_{\mathrm{O}}=\dot{\vec{R}}_q\left( t \right) ,\dot{\vec{v}}_{\mathrm{O}}\ne \ddot{\vec{R}}_q\left( t \right) v O?=R ˙q?(t),v ˙O?=R ¨q?(t)
In face, v ? ˙ O \dot{\vec{v}}_{\mathrm{O}} v ˙O? gives the rate of change in stream velocity of body-fixed particles passing through o o o

1.1 Spatial vs. Conventional Accel

Suppose R ? q ( t ) \vec{R}_q\left( t \right) R q?(t) is the body fixed particle coincides with o o o at time t t t
So by definition , we have v ? O ( t ) = R ? ˙ q ( t ) \vec{v}_{\mathrm{O}}\left( t \right) =\dot{\vec{R}}_q\left( t \right) v O?(t)=R ˙q?(t) , however v ? ˙ O ≠ R ? ¨ q ( t ) \dot{\vec{v}}_{\mathrm{O}}\ne \ddot{\vec{R}}_q\left( t \right) v ˙O?=R ¨q?(t) , where R ? ¨ q ( t ) \ddot{\vec{R}}_q\left( t \right) R ¨q?(t) is the conventional acceleration of the body-fixed point q q q

At time t t t : R ? q ( t ) = 0 \vec{R}_q\left( t \right) =0 R q?(t)=0 , v ? O ( t ) = R ? ˙ q ( t ) \vec{v}_{\mathrm{O}}\left( t \right) =\dot{\vec{R}}_q\left( t \right) v O?(t)=R ˙q?(t)
At time t + δ t+\delta t+δ : R ? q ′ ( t ) = 0 \vec{R}_{q^{\prime}}\left( t \right) =0 R q?(t)=0 , v ? O ( t + δ ) = ?? R ? ˙ q ′ ( t + δ ) ≠ R ? ˙ q ( t + δ ) \vec{v}_{\mathrm{O}}\left( t+\delta \right) =\,\,\dot{\vec{R}}_{q^{\prime}}\left( t+\delta \right) \ne \dot{\vec{R}}_q\left( t+\delta \right) v O?(t+δ)=R ˙q?(t+δ)=R ˙q?(t+δ) —— q ′ q^{\prime} q another body-fixed particle

  • Note : q q q and q ′ q^{\prime} q are different points, lim ? δ → 0 v ? O ( t ) = v ? O ( t + δ ) ? v ? O ( t ) δ = R ? ˙ q ′ ( t + δ ) ? R ? q ( t ) δ \underset{\delta \rightarrow 0}{\lim}\vec{v}_{\mathrm{O}}\left( t \right) =\frac{\vec{v}_{\mathrm{O}}\left( t+\delta \right) -\vec{v}_{\mathrm{O}}\left( t \right)}{\delta}=\frac{\dot{\vec{R}}_{q^{\prime}}\left( t+\delta \right) -\vec{R}_q\left( t \right)}{\delta} δ0lim?v O?(t)=δv O?(t+δ)?v O?(t)?=δR ˙q?(t+δ)?R q?(t)?

实际上只需考虑Twist最开始的定义,即速度 v ? O \vec{v}_{\mathrm{O}} v O? 并不是某一点的速度,而是考虑相对坐标系原点而言的虚拟点在该角速度下的瞬时速度( R ? ˙ q ( t ) = v ? O ( t ) + ω ? ( t ) × R ? q ( t ) \dot{\vec{R}}_q\left( t \right) =\vec{v}_{\mathrm{O}}\left( t \right) +\vec{\omega}\left( t \right) \times \vec{R}_q\left( t \right) R ˙q?(t)=v O?(t)+ω (t)×R q?(t)),而与该坐标系所代表的真实点的运动无关( R ? q ( t ) \vec{R}_q\left( t \right) R q?(t) is the body fixed particle coincides with o o o at time t t t),即为:
R ? ¨ q ( t ) = v ? ˙ O ( t ) + ω ? ˙ ( t ) × R ? q ( t ) ↗ 0 + ω ? ( t ) × R ? ˙ q ( t ) = v ? ˙ O ( t ) + ω ? ( t ) × R ? ˙ q ( t ) \ddot{\vec{R}}_q\left( t \right) =\dot{\vec{v}}_{\mathrm{O}}\left( t \right) +\dot{\vec{\omega}}\left( t \right) \times \vec{R}_q\left( t \right) _{\nearrow 0}+\vec{\omega}\left( t \right) \times \dot{\vec{R}}_q\left( t \right) =\dot{\vec{v}}_{\mathrm{O}}\left( t \right) +\vec{\omega}\left( t \right) \times \dot{\vec{R}}_q\left( t \right) R ¨q?(t)=v ˙O?(t)+ω ˙(t)×R q?(t)0?+ω (t)×R ˙q?(t)=v ˙O?(t)+ω (t)×R ˙q?(t)

1.2 Plueker Coordinate System and Basis Vectors

按照向量的本质理解即可,这也是笔者为啥不是很喜欢旋量的原因。

Recall coordinate-free concept: let R ? ∈ R 3 \vec{R}\in \mathbb{R} ^3 R R3 be a free vector with { O } \left\{ O \right\} {O} and { B } \left\{ B \right\} {B} frame coordinate R ? O \vec{R}^O R O and R ? B \vec{R}^B R B

矢量的变换:
在这里插入图片描述在这里插入图片描述

旋量的变换:
在这里插入图片描述
[ e B 1 O e B 2 O e B 3 O e B 4 O e B 4 O e B 5 O ] 6 × 6 = [ X B O ] = [ A d [ T B O ] ] \left[ \begin{array}{l} e_{\mathrm{B}1}^{O}& e_{\mathrm{B}2}^{O}& e_{\mathrm{B}3}^{O}& e_{\mathrm{B}4}^{O}& e_{\mathrm{B}4}^{O}& e_{\mathrm{B}5}^{O}\\ \end{array} \right] _{6\times 6}=\left[ X_{\mathrm{B}}^{O} \right] =\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] [eB1O??eB2O??eB3O??eB4O??eB4O??eB5O??]6×6?=[XBO?]=[Ad[TBO?]?]
在这里插入图片描述
在这里插入图片描述

1.3 Work with Moving Reference Frame

Now let’s work with { O } \left\{ O \right\} {O} frame to find the derivative —— we need to compute : [ e ˙ B 1 O e ˙ B 2 O e ˙ B 3 O e ˙ B 4 O e ˙ B 4 O e ˙ B 5 O ] 6 × 6 = [ X ˙ B O ] = d d t [ A d [ T B O ] ] \left[ \begin{array}{l} \dot{e}_{\mathrm{B}1}^{O}& \dot{e}_{\mathrm{B}2}^{O}& \dot{e}_{\mathrm{B}3}^{O}& \dot{e}_{\mathrm{B}4}^{O}& \dot{e}_{\mathrm{B}4}^{O}& \dot{e}_{\mathrm{B}5}^{O}\\ \end{array} \right] _{6\times 6}=\left[ \dot{X}_{\mathrm{B}}^{O} \right] =\frac{\mathrm{d}}{\mathrm{d}t}\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] [e˙B1O??e˙B2O??e˙B3O??e˙B4O??e˙B4O??e˙B5O??]6×6?=[X˙BO?]=dtd?[Ad[TBO?]?]

Let’s denote : [ T B O ] = ( [ Q ] , R ? ) ? d d t ( [ [ Q ] 0 R ? ~ [ Q ] [ Q ] ] ) = [ [ Q ˙ ] 0 ( R ? ~ [ Q ] ) ′ [ Q ˙ ] ] \left[ T_{\mathrm{B}}^{O} \right] =\left( \left[ Q \right] ,\vec{R} \right) \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ \begin{matrix} \left[ Q \right]& 0\\ \tilde{\vec{R}}\left[ Q \right]& \left[ Q \right]\\ \end{matrix} \right] \right) =\left[ \begin{matrix} \left[ \dot{Q} \right]& 0\\ \left( \tilde{\vec{R}}\left[ Q \right] \right) ^{\prime}& \left[ \dot{Q} \right]\\ \end{matrix} \right] [TBO?]=([Q],R )?dtd?([[Q]R ~[Q]?0[Q]?])= ?[Q˙?](R ~[Q])?0[Q˙?]? ?

{ B } \left\{ B \right\} {B} frame has instantaneous velocity V B = [ ω ? v ? O ] \mathcal{V} _B=\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{O}}\\ \end{array} \right] VB?=[ω v O??]

1.4 Derivative of Adjoint

Note : [ Q ˙ ] = ω ? × [ Q ] , R ? ˙ = v ? O + ω ? × R ? , [ Q ] ω ? ~ = [ Q ] ω ? ~ [ Q ] T , ω ? 1 × ω ? 2 ~ = ω ? ~ 1 ω ? ~ 2 ? ω ? ~ 2 ω ? ~ 1 \left[ \dot{Q} \right] =\vec{\omega}\times \left[ Q \right] ,\dot{\vec{R}}=\vec{v}_{\mathrm{O}}+\vec{\omega}\times \vec{R},\widetilde{\left[ Q \right] \vec{\omega}}=\left[ Q \right] \tilde{\vec{\omega}}\left[ Q \right] ^{\mathrm{T}},\widetilde{\vec{\omega}_1\times \vec{\omega}_2}=\tilde{\vec{\omega}}_1\tilde{\vec{\omega}}_2-\tilde{\vec{\omega}}_2\tilde{\vec{\omega}}_1 [Q˙?]=ω ×[Q],R ˙=v O?+ω ×R ,[Q]ω ?=[Q]ω ~[Q]T,ω 1?×ω 2? ?=ω ~1?ω ~2??ω ~2?ω ~1?(Jacobi’s Identity)

After some computation :
d d t [ A d [ T B O ] ] = [ ω ? ~ 0 v ? ~ O ω ? ~ ] [ A d [ T B O ] ] = [ X ˙ B O ] \frac{\mathrm{d}}{\mathrm{d}t}\left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] =\left[ \begin{matrix} \tilde{\vec{\omega}}& 0\\ \tilde{\vec{v}}_{\mathrm{O}}& \tilde{\vec{\omega}}\\ \end{matrix} \right] \left[ Ad_{\left[ T_{\mathrm{B}}^{O} \right]} \right] =\left[ \dot{X}_{\mathrm{B}}^{O} \right] dtd?[Ad[TBO?]?]=[ω ~v ~O??0ω ~?][Ad[TBO?]?]=[X˙BO?]

Define : [ ω ? ~ 0 v ? ~ O ω ? ~ ] = V ~ B \left[ \begin{matrix} \tilde{\vec{\omega}}& 0\\ \tilde{\vec{v}}_{\mathrm{O}}& \tilde{\vec{\omega}}\\ \end{matrix} \right] =\tilde{\mathcal{V}}_B [ω ~v ~O??0ω ~?]=V~B?
{ [ Q ˙ B O ] = ω ? ~ B [ Q B O ] [ X ˙ B O ] = V ~ B [ X ˙ B O ] \begin{cases} \left[ \dot{Q}_{\mathrm{B}}^{O} \right] =\tilde{\vec{\omega}}_B\left[ Q_{\mathrm{B}}^{O} \right]\\ \left[ \dot{X}_{\mathrm{B}}^{O} \right] =\tilde{\mathcal{V}}_B\left[ \dot{X}_{\mathrm{B}}^{O} \right]\\ \end{cases} ? ? ??[Q˙?BO?]=ω ~B?[QBO?][X˙BO?]=V~B?[X˙BO?]?
In coordinate free: e ˙ B 1 O = V ~ B e B 1 O \dot{e}_{\mathrm{B}1}^{O}=\tilde{\mathcal{V}}_Be_{\mathrm{B}1}^{O} e˙B1O?=V~B?eB1O?

1.4.1 Spatial Cross Product

Given two spatial velocities(twists) V 1 \mathcal{V} _1 V1? and V 2 \mathcal{V} _2 V2? , their spatial product is
V 1 × V 2 = [ ω ? 1 v ? 1 O ] × [ ω ? 2 v ? 2 O ] = [ ω ? 1 × ω ? 2 ω ? 1 × v ? 2 O + v ? 1 O × ω ? 2 ] \mathcal{V} _1\times \mathcal{V} _2=\left[ \begin{array}{c} \vec{\omega}_1\\ {\vec{v}_1}_{\mathrm{O}}\\ \end{array} \right] \times \left[ \begin{array}{c} \vec{\omega}_2\\ {\vec{v}_2}_{\mathrm{O}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{\omega}_1\times \vec{\omega}_2\\ \vec{\omega}_1\times {\vec{v}_2}_{\mathrm{O}}+{\vec{v}_1}_{\mathrm{O}}\times \vec{\omega}_2\\ \end{array} \right] V1?×V2?=[ω 1?v 1?O??]×[ω 2?v 2?O??]=[ω 1?×ω 2?ω 1?×v 2?O?+v 1?O?×ω 2??]

Matrix representation : V 1 × V 2 = V ~ 1 V 2 , V ~ 1 = [ ω ? ~ 1 0 v ? ~ 1 O ω ? ~ 1 ] \mathcal{V} _1\times \mathcal{V} _2=\tilde{\mathcal{V}}_1\mathcal{V} _2,\tilde{\mathcal{V}}_1=\left[ \begin{matrix} \tilde{\vec{\omega}}_1& 0\\ {\tilde{\vec{v}}_1}_{\mathrm{O}}& \tilde{\vec{\omega}}_1\\ \end{matrix} \right] V1?×V2?=V~1?V2?,V~1?=[ω ~1?v ~1?O??0ω ~1??]

Roughly speaking, when a motion V \mathcal{V} V is moving with a spatial velocity Z \mathcal{Z} Z (e.g. it is attached to a moving frame) but is otherwise not changing , then
V ˙ = Z × V \dot{\mathcal{V}}=\mathcal{Z} \times \mathcal{V} V˙=Z×V

  • Propertries

Assume A is moving wrt O O O with velocity V A \mathcal{V} _{\mathrm{A}} VA? : [ X ˙ A O ] = V ~ A O [ X A O ] \left[ \dot{X}_{\mathrm{A}}^{O} \right] =\tilde{\mathcal{V}}_{\mathrm{A}}^{O}\left[ X_{\mathrm{A}}^{O} \right] [X˙AO?]=V~AO?[XAO?]
[ X ] V ~ = [ X ] V ~ [ X ] T \widetilde{\left[ X \right] \mathcal{V} }=\left[ X \right] \tilde{\mathcal{V}}\left[ X \right] ^{\mathrm{T}} [X]V ?=[X]V~[X]T for any transformation [ X ] \left[ X \right] [X] and twist V \mathcal{V} V

1.4.2 Spatial Acceleration with Moving Reference Frame

Consider a body with velocity V B o d y \mathcal{V} _{\mathrm{Body}} VBody? (wrt inertia frame), and V B o d y O \mathcal{V} _{\mathrm{Body}}^{O} VBodyO? and V B o d y B \mathcal{V} _{\mathrm{Body}}^{B} VBodyB? be its Plueker coordinates wrt { O } \left\{ O \right\} {O} and { B } \left\{ B \right\} {B} :
A B o d y B = d d t ( V B o d y B ) + V ~ B O B V B o d y B \mathcal{A} _{\mathrm{Body}}^{B}=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{V} _{\mathrm{Body}}^{B} \right) +\tilde{\mathcal{V}}_{\mathrm{BO}}^{B}\mathcal{V} _{\mathrm{Body}}^{B} ABodyB?=dtd?(VBodyB?)+V~BOB?VBodyB?
A B o d y O = [ X B O ] A B o d y B \mathcal{A} _{\mathrm{Body}}^{O}=\left[ X_{\mathrm{B}}^{O} \right] \mathcal{A} _{\mathrm{Body}}^{B} ABodyO?=[XBO?]ABodyB?

A B o d y O = d d t ( V B o d y O ) = d d t ( [ X B O ] V B o d y B ) = [ X ˙ B O ] V B o d y B + [ X B O ] V ˙ B o d y B = V ~ B O [ X B O ] V B o d y B + [ X B O ] V ˙ B o d y B = [ X B O ] ( [ X O B ] V ~ B O [ X B O ] V B o d y B + V ˙ B o d y B ) = [ X B O ] ( [ X O B ] V B O ~ V B o d y B + V ˙ B o d y B ) = [ X B O ] ( V ~ B O B V B o d y B + V ˙ B o d y B ) = [ X B O ] A B o d y B \mathcal{A} _{\mathrm{Body}}^{O}=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{V} _{\mathrm{Body}}^{O} \right) =\frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B} \right) =\left[ \dot{X}_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\left[ X_{\mathrm{B}}^{O} \right] \dot{\mathcal{V}}_{\mathrm{Body}}^{B}=\tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\left[ X_{\mathrm{B}}^{O} \right] \dot{\mathcal{V}}_{\mathrm{Body}}^{B}=\left[ X_{\mathrm{B}}^{O} \right] \left( \left[ X_{\mathrm{O}}^{B} \right] \tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right] \mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \left( \widetilde{\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} _{\mathrm{B}}^{O}}\mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \left( \tilde{\mathcal{V}}_{\mathrm{BO}}^{B}\mathcal{V} _{\mathrm{Body}}^{B}+\dot{\mathcal{V}}_{\mathrm{Body}}^{B} \right) =\left[ X_{\mathrm{B}}^{O} \right] \mathcal{A} _{\mathrm{Body}}^{B} ABodyO?=dtd?(VBodyO?)=dtd?([XBO?]VBodyB?)=[X˙BO?]VBodyB?+[XBO?]V˙BodyB?=V~BO?[XBO?]VBodyB?+[XBO?]V˙BodyB?=[XBO?]([XOB?]V~BO?[XBO?]VBodyB?+V˙BodyB?)=[XBO?]([XOB?]VBO? ?VBodyB?+V˙BodyB?)=[XBO?](V~BOB?VBodyB?+V˙BodyB?)=[XBO?]ABodyB?

EXAMPLE:
在这里插入图片描述

2. Spatial Force(Wrench)

Consider a rigid body with many forces on it and fix an arbitrary point O O O in space
在这里插入图片描述
The net effect of these forces can be expressed as:

  • A force f f f , acting along a line passing through O O O —— f ? = ∑ f ? i i \vec{f}=\sum{\vec{f}_{\mathrm{i}}}_{\mathrm{i}} f ?=f ?i?i?
  • A moment m ? O \vec{m}_{\mathrm{O}} m O? about point O O O —— m ? O = ∑ R ? P i O × f ? i \vec{m}_{\mathrm{O}}=\sum{\vec{R}_{\mathrm{Pi}}^{O}\times \vec{f}_{\mathrm{i}}} m O?=R PiO?×f ?i?

Spatial Force(Wrench) : is given by the 6D vector
F = [ m ? O f ? ] \mathcal{F} =\left[ \begin{array}{c} \vec{m}_{\mathrm{O}}\\ \vec{f}\\ \end{array} \right] F=[m O?f ??]

What is we choose reference point to Q Q Q?
m ? Q = ∑ R ? P i Q × f ? i = ∑ ( R ? O Q + R ? P i O ) × f ? i = m ? O + ∑ R ? O Q × f ? i \vec{m}_{\mathrm{Q}}=\sum{\vec{R}_{\mathrm{Pi}}^{Q}\times \vec{f}_{\mathrm{i}}}=\sum{\left( \vec{R}_{\mathrm{O}}^{Q}+\vec{R}_{\mathrm{Pi}}^{O} \right) \times \vec{f}_{\mathrm{i}}}=\vec{m}_{\mathrm{O}}+\sum{\vec{R}_{\mathrm{O}}^{Q}\times \vec{f}_{\mathrm{i}}} m Q?=R PiQ?×f ?i?=(R OQ?+R PiO?)×f ?i?=m O?+R OQ?×f ?i?

2.1 Spatial Force in Pluecker Coordinate Systems

Given a frame { A } \left\{ A \right\} {A}, the Plueker coordinate of a spatial force F \mathcal{F} F is given by F A = [ m ? O A f ? A ] \mathcal{F} ^A=\left[ \begin{array}{c} \vec{m}_{\mathrm{O}}^{A}\\ \vec{f}^A\\ \end{array} \right] FA=[m OA?f ?A?]

Coordinate transform :
{ f ? A = [ Q B A ] f ? B m ? O A = [ Q B A ] m ? O B + R ? B A × [ Q B A ] f ? B ? F A = [ X B A ] T F B = [ X B A ] ? F B \begin{cases} \vec{f}^A=\left[ Q_{\mathrm{B}}^{A} \right] \vec{f}^B\\ \vec{m}_{\mathrm{O}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{m}_{\mathrm{O}}^{B}+\vec{R}_{\mathrm{B}}^{A}\times \left[ Q_{\mathrm{B}}^{A} \right] \vec{f}^B\\ \end{cases}\Rightarrow \mathcal{F} ^A=\left[ X_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\mathcal{F} ^B=\left[ X_{\mathrm{B}}^{A} \right] ^*\mathcal{F} ^B {f ?A=[QBA?]f ?Bm OA?=[QBA?]m OB?+R BA?×[QBA?]f ?B??FA=[XBA?]TFB=[XBA?]?FB

2.2 Wrench-Twist Pair and Power

Recall that for a point mass with linear velocity v ? \vec{v} v and a linear force f ? \vec{f} f ? . Then we know that the power (instantaneous work done by f ? \vec{f} f ? ) is given by : f ? ? v ? = f ? T v ? \vec{f}\cdot \vec{v}=\vec{f}^{\mathrm{T}}\vec{v} f ??v =f ?Tv

This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)

Suppose a rigid body has a twist V A = ( ω ? A , v ? O A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{O}}^{A} \right) VA=(ω A,v OA?) and a wrench F A = ( m ? O A , f ? A ) \mathcal{F} ^A=\left( \vec{m}_{\mathrm{O}}^{A},\vec{f}^A \right) FA=(m OA?,f ?A) acts on the body. Then the power is simply
P = ( V A ) T F A = ( F A ) T V A = ( ω ? A ) T m ? O A + ( v ? O A ) T f ? A P=\left( \mathcal{V} ^A \right) ^{\mathrm{T}}\mathcal{F} ^A=\left( \mathcal{F} ^A \right) ^{\mathrm{T}}\mathcal{V} ^A=\left( \vec{\omega}^A \right) ^{\mathrm{T}}\vec{m}_{\mathrm{O}}^{A}+\left( \vec{v}_{\mathrm{O}}^{A} \right) ^{\mathrm{T}}\vec{f}^A P=(VA)TFA=(FA)TVA=(ω A)Tm OA?+(v OA?)Tf ?A

2.3 Joint Torque

Consider a link attached to a 1-dof joint(r.g. revolute or prismatic). be the screw axis of the joint. Then the power produced by the joint is V = S ^ θ ˙ \mathcal{V} =\hat{\mathcal{S}}\dot{\theta} V=S^θ˙

F \mathcal{F} F be the wrench provided by the joint. Then the power produced by the joint is P = ( V ) T F = ( S ^ θ ˙ ) T F = ( S ^ T F ) θ ˙ = τ θ ˙ P=\left( \mathcal{V} \right) ^{\mathrm{T}}\mathcal{F} =\left( \hat{\mathcal{S}}\dot{\theta} \right) ^{\mathrm{T}}\mathcal{F} =\left( \hat{\mathcal{S}}^{\mathrm{T}}\mathcal{F} \right) \dot{\theta}=\tau \dot{\theta} P=(V)TF=(S^θ˙)TF=(S^TF)θ˙=τθ˙

τ = S ^ T F = F T S ^ \tau =\hat{\mathcal{S}}^{\mathrm{T}}\mathcal{F} =\mathcal{F} ^{\mathrm{T}}\hat{\mathcal{S}} τ=S^TF=FTS^ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench

Often times, τ \tau τ is referred to as joint “torque” or generalized force

3. Spatial Momentum

笔者待整理: 链接

3.1 Rotational Interial

  • Recall momentum for point mass:

笔者待整理: 链接

在这里插入图片描述

H = [ h ? p ? ] ∈ R 6 \mathcal{H} =\left[ \begin{array}{c} \vec{h}\\ \vec{p}\\ \end{array} \right] \in \mathbb{R} ^6 H=[h p ??]R6

3.2 Change Reference for Momentum

  • Spatial momentum transforms in the same way as spatial forces:
    H A = [ X C A ] ? H C \mathcal{H} ^A=\left[ X_{\mathrm{C}}^{A} \right] ^*\mathcal{H} ^C HA=[XCA?]?HC
    H C = [ h ? B o d y / C C p ? C ] , H A = [ h ? A A p ? A ] = [ [ Q C A ] h ? B o d y / C C ? R ? ~ C A [ Q C A ] p ? C [ Q C A ] p ? C ] = [ [ Q C A ] ? R ? ~ C A [ Q C A ] 0 [ Q C A ] ] [ h ? B o d y / C C p ? C ] = [ X C A ] ? [ h ? B o d y / C C p ? C ] \mathcal{H} ^C=\left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] ,\mathcal{H} ^A=\left[ \begin{array}{c} \vec{h}_{\mathrm{A}}^{A}\\ \vec{p}^A\\ \end{array} \right] =\left[ \begin{array}{c} \left[ Q_{\mathrm{C}}^{A} \right] \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}-\tilde{\vec{R}}_{\mathrm{C}}^{A}\left[ Q_{\mathrm{C}}^{A} \right] \vec{p}^C\\ \left[ Q_{\mathrm{C}}^{A} \right] \vec{p}^C\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{C}}^{A} \right]& -\tilde{\vec{R}}_{\mathrm{C}}^{A}\left[ Q_{\mathrm{C}}^{A} \right]\\ 0& \left[ Q_{\mathrm{C}}^{A} \right]\\ \end{matrix} \right] \left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] =\left[ X_{\mathrm{C}}^{A} \right] ^*\left[ \begin{array}{c} \vec{h}_{\mathrm{Body}/\mathrm{C}}^{C}\\ \vec{p}^C\\ \end{array} \right] HC=[h Body/CC?p ?C?],HA=[h AA?p ?A?]=[[QCA?]h Body/CC??R ~CA?[QCA?]p ?C[QCA?]p ?C?]=[[QCA?]0??R ~CA?[QCA?][QCA?]?][h Body/CC?p ?C?]=[XCA?]?[h Body/CC?p ?C?]

3.3 Spatial Inertia

Inertia of a rigid body defines linear relationship between velocity and momentum

Spacial inertia I \mathcal{I} I is the one such that
H = I V \mathcal{H} =\mathcal{I} \mathcal{V} H=IV
Let { M } \left\{ M \right\} {M} be a frame whose origin coincide with CoM. Then
I B o d y / C o M M = [ I B o d y / C o M M 0 0 m t o t a l E 3 × 3 ] G \mathcal{I} _{\mathrm{Body}/\mathrm{CoM}}^{M}=\left[ \begin{matrix} I_{\mathrm{Body}/\mathrm{CoM}}^{M}& 0\\ 0& m_{\mathrm{total}}E_{3\times 3}\\ \end{matrix} \right] G IBody/CoMM?=[IBody/CoMM?0?0mtotal?E3×3??]G

  • Spatial inertia wrt another frame { F } \left\{ F \right\} {F}:
    I F = [ X M F ] ? I M [ X F M ] \mathcal{I} ^F=\left[ X_{\mathrm{M}}^{F} \right] ^*\mathcal{I} ^M\left[ X_{\mathrm{F}}^{M} \right] IF=[XMF?]?IM[XFM?]

Special case : [ Q F M ] = E 3 × 3 \left[ Q_{\mathrm{F}}^{M} \right] =E_{3\times 3} [QFM?]=E3×3?
[ X M F ] = [ E 3 × 3 0 R ? ~ M F E 3 × 3 ] ? I F = [ I M + m t o t a l R ? ~ M F T R ? ~ M F m t o t a l R ? ~ M F m t o t a l R ? ~ M F m t o t a l E 3 × 3 ] \left[ X_{\mathrm{M}}^{F} \right] =\left[ \begin{matrix} E_{3\times 3}& 0\\ \tilde{\vec{R}}_{\mathrm{M}}^{F}& E_{3\times 3}\\ \end{matrix} \right] \Rightarrow \mathcal{I} ^F=\left[ \begin{matrix} \mathcal{I} ^M+m_{\mathrm{total}}{\tilde{\vec{R}}_{\mathrm{M}}^{F}}^{\mathrm{T}}\tilde{\vec{R}}_{\mathrm{M}}^{F}& m_{\mathrm{total}}\tilde{\vec{R}}_{\mathrm{M}}^{F}\\ m_{\mathrm{total}}\tilde{\vec{R}}_{\mathrm{M}}^{F}& m_{\mathrm{total}}E_{3\times 3}\\ \end{matrix} \right] [XMF?]=[E3×3?R ~MF??0E3×3??]?IF= ?IM+mtotal?R ~MF?TR ~MF?mtotal?R ~MF??mtotal?R ~MF?mtotal?E3×3?? ?

4. Newton-Euler Equation using Spatial Vectors

4.1 Cross Product for Spatial Force and Momentum

Assume frame A A A is moving with velocity V A A \mathcal{V} _{\mathrm{A}}^{A} VAA?
( d d t F ) A = d d t F A + V A × ? F A \left( \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} \right) ^A=\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F} ^A+\mathcal{V} ^A\times ^*\mathcal{F} ^A (dtd?F)A=dtd?FA+VA×?FA
( d d t H ) A = d d t H A + V A × ? H A \left( \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} \right) ^A=\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} ^A+\mathcal{V} ^A\times ^*\mathcal{H} ^A (dtd?H)A=dtd?HA+VA×?HA

where × ? \times ^* ×? defined as V = [ ω ? v ? ] , F = [ m ? f ? ] , V × ? F = [ ω ? ~ m ? + v ? ~ f ? ω ? ~ f ? ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}\\ \end{array} \right] ,\mathcal{F} =\left[ \begin{array}{c} \vec{m}\\ \vec{f}\\ \end{array} \right] ,\mathcal{V} \times ^*\mathcal{F} =\left[ \begin{array}{c} \tilde{\vec{\omega}}\vec{m}+\tilde{\vec{v}}\vec{f}\\ \tilde{\vec{\omega}}\vec{f}\\ \end{array} \right] V=[ω v ?],F=[m f ??],V×?F=[ω ~m +v ~f ?ω ~f ??], or equivately V × ? ~ = [ ω ? ~ v ? ~ 0 ω ? ~ ] \widetilde{\mathcal{V} \times ^*}=\left[ \begin{matrix} \tilde{\vec{\omega}}& \tilde{\vec{v}}\\ 0& \tilde{\vec{\omega}}\\ \end{matrix} \right] V×? ?=[ω ~0?v ~ω ~?]

Fact : V × ? ~ = V ~ T \widetilde{\mathcal{V} \times ^*}=\tilde{\mathcal{V}}^{\mathrm{T}} V×? ?=V~T

4.2 Newton-Euler Equation

  • Newton-Euler equation :
    F = d d t H = I A + V ~ T I V \mathcal{F} =\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} =\mathcal{I} \mathcal{A} +\tilde{\mathcal{V}}^{\mathrm{T}}\mathcal{I} \mathcal{V} F=dtd?H=IA+V~TIV
    (due to velocity is changing and account for the face that inertia is moving)

Adopting spatial vectors, the Newton-Euler equation has the same form in any frame

4.3 Derivations of Newton-Euler Equation

d d t H O = d d t ( I O V O ) = I ˙ O V O + I O A O = d d t ( [ X B O ] ? I B [ X O B ] ) V O + I O A O = [ X ˙ B O ] ? I B [ X O B ] V O + [ X B O ] ? I B [ X ˙ O B ] V O + I O A O = V ~ B O T [ X B O ] ? I B [ X O B ] V O ? [ X B O ] ? I B [ X O B ] V ~ B O T V O ↗ 0 + I O A O = V ~ B O T I O V O + I O A O \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{H} ^O=\frac{\mathrm{d}}{\mathrm{d}t}\left( \mathcal{I} ^O\mathcal{V} ^O \right) =\dot{\mathcal{I}}^O\mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O=\frac{\mathrm{d}}{\mathrm{d}t}\left( \left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \right) \mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O \\ =\left[ \dot{X}_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} ^O+\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ \dot{X}_{\mathrm{O}}^{B} \right] \mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O \\ ={\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] \mathcal{V} ^O-\left[ X_{\mathrm{B}}^{O} \right] ^*\mathcal{I} ^B\left[ X_{\mathrm{O}}^{B} \right] {\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}{\mathcal{V} ^O}_{\nearrow 0}+\mathcal{I} ^O\mathcal{A} ^O \\ ={\tilde{\mathcal{V}}_{\mathrm{B}}^{O}}^{\mathrm{T}}\mathcal{I} ^O\mathcal{V} ^O+\mathcal{I} ^O\mathcal{A} ^O dtd?HO=dtd?(IOVO)=I˙OVO+IOAO=dtd?([XBO?]?IB[XOB?])VO+IOAO=[X˙BO?]?IB[XOB?]VO+[XBO?]?IB[X˙OB?]VO+IOAO=V~BO?T[XBO?]?IB[XOB?]VO?[XBO?]?IB[XOB?]V~BO?TVO0?+IOAO=V~BO?TIOVO+IOAO

Note :
{ [ X ˙ B O ] = V ~ B O [ X B O ] [ X B O ] [ X O B ] = E ? [ X ˙ B O ] [ X O B ] + [ X B O ] [ X ˙ O B ] = 0 ? [ X ˙ O B ] = ? [ X O B ] [ X ˙ B O ] [ X O B ] = ? [ X O B ] V ~ B O \begin{cases} \left[ \dot{X}_{\mathrm{B}}^{O} \right] =\tilde{\mathcal{V}}_{\mathrm{B}}^{O}\left[ X_{\mathrm{B}}^{O} \right]\\ \left[ X_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] =E\\ \end{cases}\Rightarrow \left[ \dot{X}_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] +\left[ X_{\mathrm{B}}^{O} \right] \left[ \dot{X}_{\mathrm{O}}^{B} \right] =0\Rightarrow \left[ \dot{X}_{\mathrm{O}}^{B} \right] =-\left[ X_{\mathrm{O}}^{B} \right] \left[ \dot{X}_{\mathrm{B}}^{O} \right] \left[ X_{\mathrm{O}}^{B} \right] =-\left[ X_{\mathrm{O}}^{B} \right] \tilde{\mathcal{V}}_{\mathrm{B}}^{O} {[X˙BO?]=V~BO?[XBO?][XBO?][XOB?]=E??[X˙BO?][XOB?]+[XBO?][X˙OB?]=0?[X˙OB?]=?[XOB?][X˙BO?][XOB?]=?[XOB?]V~BO?
Frame B is attached to the body , V B = V B o d y , I B \mathcal{V} _B=\mathcal{V} _{Body},\mathcal{I} ^B VB?=VBody?,IB is constant

文章来源:https://blog.csdn.net/LiongLoure/article/details/134968630
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。