在看此篇前,建议先阅读MySQL索引,对索引有个基本了解:MySQL数据库进阶-索引-CSDN博客
在进行SQL优化前,我们必须先了解SQL查询的性能分析,为什么这条SQL慢,慢在哪里?这样我们才能更好的进行SQL优化。
查看当前数据库的 INSERT, UPDATE, DELETE, SELECT 访问频次:
SHOW GLOBAL STATUS LIKE 'Com_______';
或者 SHOW SESSION STATUS LIKE 'Com_______';
例:show global status like 'Com_______'
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息: # 开启慢查询日志开关 slow_query_log=1
# 设置慢查询日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志 long_query_time=2 更改后记得重启MySQL服务,日志文件位置:/var/lib/mysql/localhost-slow.log
查看慢查询日志开关状态:
show variables like 'slow_query_log';
show profile 能在做SQL优化时帮我们了解时间都耗费在哪里,通过 have_profiling 参数,能看到当前 MySQL 是否支持 profile 操作:
SELECT @@have_profiling;
profiling 默认关闭,可以通过set语句在session/global级别开启 profiling:
SET profiling = 1;
查看所有语句的耗时:
show profiles;
查看指定query_id的SQL语句各个阶段的耗时:
show profile for query query_id;
查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。 语法: # 直接在select语句之前加上关键字 explain / desc EXPLAIN SELECT 字段列表 FROM 表名 HWERE 条件;
EXPLAIN 各字段含义:
id:select 查询的序列号,表示查询中执行 select 子句或者操作表的顺序(id相同,执行顺序从上到下;id不同,值越大越先执行)
select_type:表示 SELECT 的类型,常见取值有 SIMPLE(简单表,即不适用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
type:表示连接类型,性能由好到差的连接类型为 NULL、system、const、eq_ref、ref、range、index、all
possible_key:可能应用在这张表上的索引,一个或多个
Key:实际使用的索引,如果为 NULL,则没有使用索引
Key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好
rows:MySQL认为必须要执行的行数,在InnoDB引擎的表中,是一个估计值,可能并不总是准确的
filtered:表示返回结果的行数占需读取行数的百分比,filtered的值越大越好
普通插入:
采用批量插入(一次插入的数据不建议超过1000条)
手动提交事务
主键顺序插入
大批量插入: 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令插入。
# 客户端连接服务端时,加上参数 --local-infile(这一行在bash/cmd界面输入)
mysql --local-infile -u root -p
# 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
select @@local_infile;
# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';
数据组织方式:在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(Index organized table, IOT)
页分裂:页可以为空,也可以填充一般,也可以填充100%,每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。
页合并:当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。当页中删除的记录到达 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前后)看看是否可以将这两个页合并以优化空间使用。
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或创建索引时指定
主键设计原则:
满足业务需求的情况下,尽量降低主键的长度
插入数据时,尽量选择顺序插入,选择使用 AUTO_INCREMENT 自增主键
尽量不要使用 UUID 做主键或者是其他的自然主键,如身份证号
业务操作时,避免对主键的修改
????????Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区 sort buffer 中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序
????????Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高
如果order by字段全部使用升序排序或者降序排序,则都会走索引,但是如果一个字段升序排序,另一个字段降序排序,则不会走索引,explain的extra信息显示的是Using index, Using filesort
,如果要优化掉Using filesort,则需要另外再创建一个索引,如:
此时使用如下sql会全部走索引
select id, age, phone from tb_user order by age asc, phone desc;
根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
尽量使用覆盖索引
多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)
如果不可避免出现filesort,大数据量排序时,可以适当增大排序缓冲区大小 sort_buffer_size(默认256k)
在分组操作时,可以通过索引来提高效率
分组操作时,索引的使用也是满足最左前缀法则的
如索引为idx_user_pro_age_stat
,则句式可以是select ... where profession order by age
,这样也符合最左前缀法则
常见的问题如limit 2000000, 10
,此时需要 MySQL 排序前2000000条记录,但仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。 优化方案:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化
例如:
-- 此语句耗时很长
select * from tb_sku limit 9000000, 10;
-- 通过覆盖索引加快速度,直接通过主键索引进行排序及查询
select id from tb_sku order by id limit 9000000, 10;
-- 下面的语句是错误的,因为 MySQL 不支持 in 里面使用 limit
-- select * from tb_sku where id in (select id from tb_sku order by id limit 9000000, 10);
-- 通过连表查询即可实现第一句的效果,并且能达到第二句的速度
select * from tb_sku as s, (select id from tb_sku order by id limit 9000000, 10) as a where s.id = a.id;
MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高(前提是不适用where); InnoDB 在执行 count(*) 时,需要把数据一行一行地从引擎里面读出来,然后累计计数。 优化方案:自己计数,如创建key-value表存储在内存或硬盘,或者是用redis
count的几种用法:
如果count函数的参数(count里面写的那个字段)不是NULL(字段值不为NULL),累计值就加一,最后返回累计值
用法:count(*)、count(主键)、count(字段)、count(1)
count(主键)跟count(*)一样,因为主键不能为空;
count(字段)只计算字段值不为NULL的行;count(1)引擎会为每行添加一个1,然后就count这个1,返回结果也跟count(*)一样;count(null)返回0
各种用法的性能:
count(主键):InnoDB引擎会遍历整张表,把每行的主键id值都取出来,返回给服务层,服务层拿到主键后,直接按行进行累加(主键不可能为空)
count(字段):没有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加;有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加
count(1):InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一层,放一个数字 1 进去,直接按行进行累加
count(*):InnoDB 引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加
按效率排序:count(字段) < count(主键) < count(1) < count(*),所以尽量使用 count(*)
前面讲的都是基于查询的,基于update最常见的问题就是锁升级,也是update最重要的点。
InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
如以下两条语句: update student set no = '123' where id = 1;
,这句由于id有主键索引,所
以只会锁这一行;
update student set no = '123' where name = 'test';
这句由于name没有索引,所以会把整张表都锁住进行数据更新,解决方法是给name字段添加索引。
在这篇文章中,我们讨论了MySQL性能分析、SQL优化方案。希望这些内容能帮助您更好地了解SQL 调优,在实际工作中发挥其优势。
如果本文对您有帮助,请持续关注此博客,我会在这里分享更多Python、Java相关优质好文,帮助提升您的技术能力。
如果您有任何疑问或建议,请在评论区留言,有空时我会尽力为您解答。感谢您的阅读和支持!