【技术选型】clickhouse vs starRocks

发布时间:2024年01月17日

比对结论

如果只能单机部署的话,clickhouse基本无敌。
如果集群化,starRocks可以替换clickhouse,但支持的函数会相对少一些(clickhouse有不少自定义函数)

信息比对

功能clickhousestarRocks
join大表关联容易OOM对join有相关优化
场景比较适合大宽表对于星形或者雪花模型的兼容性更好
并发性大量短查询,每秒不超过100次数千用户同时分析查询,部分场景是万级
数据导入更新相对比较慢,更适合静态数据秒级的数据导入和实时更新,提供准实时的服务
mysql兼容性不完全完全兼容
内置函数非常丰富。支持窗口和聚合函数,以及table function支持窗口和聚合函数
部署单机版无敌,分布式相对不友好默认分布式,这就意味着需要的资源更多
分布式需要代码实现部分布式的能力。例如,建表需要先本地表在分布式表,可以类比于物化视图。且数据分布,需要手动分发,不支持自动处理正常的分布式系统

参考文档

数据仓库系列:StarRocks的简单试用及与clickhouse的对比_starrocks clickhouse对比-CSDN博客
ClickHouse vs StarRocks 选型对比

性能比对

Star Schema Benchmark(以下简称 SSB)是学术界和工业界广泛使用的一个星型模型测试集,通过这个测试集合可以方便的对比各种 OLAP 产品的基础性能指标。ClickHouse 通过改写 SSB,将星型模型打平转化成宽表 (flat table),改造成了一个单表测试 benchmark。本报告记录了 StarRocks、ClickHouse 和 Apache Druid 在 SSB 单表数据集上的性能对比结果,测试结论如下:

  • 在标准测试数据集的 13 个查询上,StarRocks 整体查询性能是 ClickHouse 的 2.1 倍,Apache Druid 的 8.7 倍。
  • StarRocks 启用 Bitmap Index 后整体查询性能是未启用的 1.3 倍,此时整体查询性能是 ClickHouse 的 2.8 倍,Apache Druid 的 11.4 倍。

参考文档

SSB Flat Table 性能测试 | StarRocks

文章来源:https://blog.csdn.net/weixin_44325637/article/details/135658960
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。