上一节 【DDR】基于Verilog的DDR控制器的简单实现(二)——写操作
本文继续以美光(Micron)公司生产的DDR3芯片MT41J512M8RH-093(芯片手册)为例,说明DDR芯片的读操作过程。下图为读操作指令格式(来自P122 Table 72: READ Command Summary),与写操作指令格式区别在于WE#位。
DDR的读操作过程类似于写操作过程,在读特定row前需要使用ACTIVATE指令激活,在读完毕后需要显式或隐式使用PRECHARGE预充电。主要区别在于读操作的DQS与DQ由DDR芯片产生,DDR控制器需要根据DQS时钟对DQ采样。一次读操作的波形图如下(来自P163 Figure 69: READ Latency),在READ指令发出后经过CL+AL个周期,DQ数据线上将有连续数据输出。其中CL(CAS latency)、AL的值为初始化阶段写入MR0,MR1寄存器的值。
读过程DQS和DQ总线上的时序约束如图(来自P170 Figure 79: Data Output Timing – tDQSQ and Data Valid Window),DQS作为DQ的时钟信号,在DQ数据开始输出前tRPRE时钟周期开始输出低电平。DQ数据线上的多个bit只有在Data valid的一段时间内同时有效。
读过程主要涉及的时序约束如下(来自P94)
* tDQSQ <75ps ;DQ信号同时有效开始相对DQS边沿的延后时间
* tQH >0.38 tCK ;DQ信号同时有效结束相对DQS边沿的延后时间
* tRTP >max(7.5ns,4CK) ;READ指令后相邻PRECHARGE指令最小时间间隔
仿真时将时钟周期取为最小时钟周期0.938ns,对应时钟频率1066.099MHz。tDQSS取为0,此时DQS时钟与clk时钟相同,每次连续写操作只对8个地址中的首个数据,最终得到的DDR3写数据代码如下:
`timescale 1ns / 1ps
//
// Company:
// Engineer: wjh776a68
//
// Create Date: 01/15/2024 15:25:15 PM
// Design Name:
// Module Name: micron_ddr_rdbyte
// Project Name:
// Target Devices: VU9P
// Tool Versions: 2017.4
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
// ddr3 x8 4Gb MT41J512M8RH-093
/****************************
* DDR3L-2133 https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf?rev=305217e2f9bd4ef48d7c6f353dfc064c
* CK(MIN) 0.938 ns
* CL 14 CK
* RCD(MIN) 14 CK
* RC(MIN) 50 CK
* RAS(MIN) 36 CK
* RP(MIN) 14 CK
* FAW 27 CK
* RRD 6 CK
* RFC 279CK
* XPR >max(5CK, RFC+10ns)
* MRD >4CK
* MOD >max(12CK, 15ns)
* ZQinit <max(512nCK, 640ns)
* DLLK >512CK
*
* tDQSS =(-0.27, 0.27)CK P94
* tDSS >0.18CK
* tWPRE >0.9CK
* tWPST >0.3CK
* tDS >55ps
* tDH >60ps
* tRAS >33ns
* tWR >15ns
*
* tDQSQ <75ps P94
* tQH >0.38 tCK
* tRTP >max(7.5ns,4CK)
* command all p118
* initial waveform p137
*
* COMMAND | NOP | MRS_1 | MRS_2 | MRS_3 | MRS_4 | ZQCL
* ddr_cke | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1
* ddr_dqs_en | 0 | | | | |
* ddr_dq_en | 0 | | | | |
* ddr_cs_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_ras_n | 1 | 0 | 0 | 0 | 0 | 1
* ddr_cas_n | 1 | 0 | 0 | 0 | 0 | 1
* ddr_we_n | 1 | 0 | 0 | 0 | 0 | 0
* ddr_ba | vvv | 010 | 011 | 001 | 000 |
* ddr_addr | vvv | 28 | 00 | 44 | 124 | a[10]
* ddr_odt | 0 | | | | |
*
* ACT : open a row in a bank, do PRECHANGE after open other row in the same bank P161
* PRECHARGE : access for the same bank is avaliable for 'RP after PRECHARGE *
* WRITE COMMAND (P122 Table 73)
* COMMAND | WR | WRS4 | WRS8 | WRAP | WRAPS4| WRAPS8
* ddr_cke | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1
* ddr_dqs_en | - | | | | |
* ddr_dq_en | - | | | | |
* ddr_cs_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_ras_n | 1 | 1 | 1 | 1 | 1 | 1
* ddr_cas_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_we_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_ba | BA | BA | BA | BA | BA | BA
* ddr_addr12 | v | 0 | 1 | v | 0 | 1
* ddr_addr10 | 0 | 0 | 0 | 1 | 1 | 1
* ddr_addr | CA | | | | |
* ddr_odt | - | | | | |
* ddr_dq | data write to mem
* ddr_dm | 0 : dq valid ; 1 : dq invalid, write skip that byte/column
*
* READ COMMAND (P122 Table 72)
* COMMAND | RD | RDS4 | RDS8 | RDAP | RDAPS4| RDAPS8
* ddr_cke | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1
* ddr_dqs_en | - | | | | |
* ddr_dq_en | - | | | | |
* ddr_cs_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_ras_n | 1 | 1 | 1 | 1 | 1 | 1
* ddr_cas_n | 0 | 0 | 0 | 0 | 0 | 0
* ddr_we_n | 1 | 1 | 1 | 1 | 1 | 1
* ddr_ba | BA | BA | BA | BA | BA | BA
* ddr_addr12 | v | 0 | 1 | v | 0 | 1
* ddr_addr10 | 0 | 0 | 0 | 1 | 1 | 1
* ddr_addr | CA | | | | |
* ddr_odt | - | | | | |
* ddr_dq | data read from mem
* ddr_dm | -
*
***************************************************************/
module micron_ddr_rdbyte #(
parameter CLK_FREQ = 1066.099, // MHz
parameter _1MS_CYCLE = 10.0**-3 / (1.0 / (CLK_FREQ * 10**6)),
parameter _1US_CYCLE = 10.0**-6 / (1.0 / (CLK_FREQ * 10**6)),
parameter integer INITIAL_CYCLE = 200 * _1US_CYCLE,
parameter integer INITIAL_STABLE_CYCLE = 500 * _1US_CYCLE,
parameter integer FREE_CYCLE = _1US_CYCLE
) (
output reg [15:0] ddr_addr,
output reg [2:0] ddr_ba,
output reg ddr_cas_n,
output reg [0:0] ddr_ck_n,
output reg [0:0] ddr_ck_p,
output reg [0:0] ddr_cke,
output reg [0:0] ddr_cs_n,
output reg [0:0] ddr_dm,
inout [7:0] ddr_dq,
inout [0:0] ddr_dqs_n,
inout [0:0] ddr_dqs_p,
output reg [0:0] ddr_odt,
output reg ddr_ras_n,
output reg ddr_reset_n,
output reg ddr_we_n,
input [28:0] s_wraddr, // 4Gb -> 512MB -> 512M -> 2^29
// 3BA 16RA 10CA
input [7:0] s_wrdata,
input s_wrstrb,
input s_wren,
input [28:0] s_rdaddr,
output [7:0] s_rddata,
input s_rden,
input clk
);
localparam [27:0] NOP_CMD = {11'b11110111000, 16'h0000, 1'b0};
localparam [27:0] MRS1_CMD = {11'b11110000010, 16'h0028, 1'b0}; //MR2 tCWL=10 A5-A3
localparam [27:0] MRS2_CMD = {11'b11110000011, 16'h0000, 1'b0}; //MR3
localparam [27:0] MRS3_CMD = {11'b11110000001, 16'h0044, 1'b0}; //MR1 tAL=0 A4-A3
localparam [27:0] MRS4_CMD = {11'b11110000000, 16'h0124, 1'b0}; //MR0 tCAS=14CK A6-A4,A2
localparam [27:0] ZQCL_CMD = {11'b11110110000, 16'h0400, 1'b0};
localparam [27:0] ACT_CMD = {11'b11110011000, 16'h0000, 1'b0}; // ba ra
localparam [27:0] PRE_CMD = {11'b11110010000, 16'h0000, 1'b0}; // ba
localparam [27:0] WR_CMD = {11'b11110100000, 16'h0000, 1'b0}; // dqs_o dq_o ba ca
localparam [27:0] RD_CMD = {11'b11110101000, 16'h0000, 1'b0}; // dqs_i dq_i ba ca
reg ddr_cke_p1, ddr_cke_p2;
reg ddr_dqs_o, ddr_dqs_en;
wire ddr_dqs_i;
reg [7:0] ddr_dq_o_r_p1, ddr_dq_o_r_p2;
wire [7:0] ddr_dq_o_r;
wire [7:0] ddr_dq_o, ddr_dq_i;
wire [7:0] dq_i_r_p1, dq_i_r_p2;
wire [7:0] dq_i_r;
reg ddr_dq_en;
reg ddr_dm_o_r_p1, ddr_dm_o_r_p2;
wire ddr_dm_o_r;
wire ddr_dm_o;
wire [2:0] wraddr_ba_s;
wire [15:0] wraddr_ra_s;
wire [9:0] wraddr_ca_s;
wire [7:0] wrdata_s;
wire wrstrb_s;
wire wren_s;
wire [2:0] rdaddr_ba_s;
wire [15:0] rdaddr_ra_s;
wire [9:0] rdaddr_ca_s;
wire [7:0] rddata_s;
// wire rdstrb_s;
wire rden_s;
reg [2:0] wraddr_ba_r;
reg [15:0] wraddr_ra_r;
reg [9:0] wraddr_ca_r;
reg [7:0] wrdata_r;
reg wrstrb_r;
reg wren_r;
reg [2:0] rdaddr_ba_r;
reg [15:0] rdaddr_ra_r;
reg [9:0] rdaddr_ca_r;
reg [7:0] rddata_r;
// reg rdstrb_r;
reg rden_r;
OBUFDS OBUFDS_ck (
.O(ddr_ck_p), // 1-bit output: Diff_p output (connect directly to top-level port)
.OB(ddr_ck_n), // 1-bit output: Diff_n output (connect directly to top-level port)
.I(clk) // 1-bit input: Buffer input
);
IOBUFDS #(
.DQS_BIAS("FALSE") // (FALSE, TRUE)
)
IOBUFDS_dqs_inst (
.O(ddr_dqs_i), // 1-bit output: Buffer output
.I(ddr_dqs_o), // 1-bit input: Buffer input
.IO(ddr_dqs_p), // 1-bit inout: Diff_p inout (connect directly to top-level port)
.IOB(ddr_dqs_n), // 1-bit inout: Diff_n inout (connect directly to top-level port)
.T(ddr_dqs_en) // 1-bit input: 3-state enable input
);
generate
OBUF OBUF_dm_inst (
.O(ddr_dm), // 1-bit output: Buffer output (connect directly to top-level port)
.I(ddr_dm_o) // 1-bit input: Buffer input
);
IDELAYCTRL #(
.SIM_DEVICE("ULTRASCALE") // Must be set to "ULTRASCALE"
)
IDELAYCTRL_dm_o_inst (
.RDY(), // 1-bit output: Ready output
.REFCLK(clk), // 1-bit input: Reference clock input
.RST(1'b0) // 1-bit input: Active high reset input. Asynchronous assert, synchronous deassert to
// REFCLK.
);
ODELAYE3 #(
.CASCADE("NONE"), // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE)
.DELAY_FORMAT("TIME"), // (COUNT, TIME)
.DELAY_TYPE("FIXED"), // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD)
.DELAY_VALUE(55), // Output delay tap setting (ps)
.IS_CLK_INVERTED(1'b0), // Optional inversion for CLK
.IS_RST_INVERTED(1'b0), // Optional inversion for RST
.REFCLK_FREQUENCY(1066.098), // IDELAYCTRL clock input frequency in MHz (200.0-2667.0).
.SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,
// ULTRASCALE_PLUS_ES2)
.UPDATE_MODE("ASYNC") // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
ODELAYE3_dm_o_inst (
.CASC_OUT(), // 1-bit output: Cascade delay output to IDELAY input cascade
.CNTVALUEOUT(), // 9-bit output: Counter value output
.DATAOUT(ddr_dm_o), // 1-bit output: Delayed data from ODATAIN input port
.CASC_IN(1'b0), // 1-bit input: Cascade delay input from slave IDELAY CASCADE_OUT
.CASC_RETURN(1'b0), // 1-bit input: Cascade delay returning from slave IDELAY DATAOUT
.CE(1'b1), // 1-bit input: Active high enable increment/decrement input
.CLK(clk), // 1-bit input: Clock input
.CNTVALUEIN(9'b0), // 9-bit input: Counter value input
.EN_VTC(1'b1), // 1-bit input: Keep delay constant over VT
.INC(1'b0), // 1-bit input: Increment/Decrement tap delay input
.LOAD(1'b0), // 1-bit input: Load DELAY_VALUE input
.ODATAIN(ddr_dm_o_r), // 1-bit input: Data input
.RST(1'b0) // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);
ODDRE1 #(
.IS_C_INVERTED(1'b1), // Optional inversion for C
.IS_D1_INVERTED(1'b0), // Unsupported, do not use
.IS_D2_INVERTED(1'b0), // Unsupported, do not use
.SRVAL(1'b0) // Initializes the ODDRE1 Flip-Flops to the specified value (1'b0, 1'b1)
)
ODDRE1_dm_o_inst (
.Q(ddr_dm_o_r), // 1-bit output: Data output to IOB
.C(clk), // 1-bit input: High-speed clock input
.D1(ddr_dm_o_r_p1), // 1-bit input: Parallel data input 1
.D2(ddr_dm_o_r_p2), // 1-bit input: Parallel data input 2
.SR(1'b0) // 1-bit input: Active High Async Reset
);
for (genvar i = 0; i < 8; i++) begin
IOBUF IOBUF_dq_inst (
.O(ddr_dq_i[i]), // 1-bit output: Buffer output
.I(ddr_dq_o[i]), // 1-bit input: Buffer input
.IO(ddr_dq[i]), // 1-bit inout: Buffer inout (connect directly to top-level port)
.T(ddr_dq_en) // 1-bit input: 3-state enable input
);
IDELAYCTRL #(
.SIM_DEVICE("ULTRASCALE") // Must be set to "ULTRASCALE"
)
IDELAYCTRL_dq_o_inst (
.RDY(), // 1-bit output: Ready output
.REFCLK(clk), // 1-bit input: Reference clock input
.RST(1'b0) // 1-bit input: Active high reset input. Asynchronous assert, synchronous deassert to
// REFCLK.
);
ODELAYE3 #(
.CASCADE("NONE"), // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE)
.DELAY_FORMAT("TIME"), // (COUNT, TIME)
.DELAY_TYPE("FIXED"), // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD)
.DELAY_VALUE(55), // Output delay tap setting (ps)
.IS_CLK_INVERTED(1'b0), // Optional inversion for CLK
.IS_RST_INVERTED(1'b0), // Optional inversion for RST
.REFCLK_FREQUENCY(1066.098), // IDELAYCTRL clock input frequency in MHz (200.0-2667.0).
.SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,
// ULTRASCALE_PLUS_ES2)
.UPDATE_MODE("ASYNC") // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
ODELAYE3_dq_o_inst (
.CASC_OUT(), // 1-bit output: Cascade delay output to IDELAY input cascade
.CNTVALUEOUT(), // 9-bit output: Counter value output
.DATAOUT(ddr_dq_o[i]), // 1-bit output: Delayed data from ODATAIN input port
.CASC_IN(1'b0), // 1-bit input: Cascade delay input from slave IDELAY CASCADE_OUT
.CASC_RETURN(1'b0), // 1-bit input: Cascade delay returning from slave IDELAY DATAOUT
.CE(1'b1), // 1-bit input: Active high enable increment/decrement input
.CLK(clk), // 1-bit input: Clock input
.CNTVALUEIN(9'b0), // 9-bit input: Counter value input
.EN_VTC(1'b1), // 1-bit input: Keep delay constant over VT
.INC(1'b0), // 1-bit input: Increment/Decrement tap delay input
.LOAD(1'b0), // 1-bit input: Load DELAY_VALUE input
.ODATAIN(ddr_dq_o_r[i]), // 1-bit input: Data input
.RST(1'b0) // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);
ODDRE1 #(
.IS_C_INVERTED(1'b1), // Optional inversion for C
.IS_D1_INVERTED(1'b0), // Unsupported, do not use
.IS_D2_INVERTED(1'b0), // Unsupported, do not use
.SRVAL(1'b0) // Initializes the ODDRE1 Flip-Flops to the specified value (1'b0, 1'b1)
)
ODDRE1_dq_o_inst (
.Q(ddr_dq_o_r[i]), // 1-bit output: Data output to IOB
.C(clk), // 1-bit input: High-speed clock input
.D1(ddr_dq_o_r_p1[i]), // 1-bit input: Parallel data input 1
.D2(ddr_dq_o_r_p2[i]), // 1-bit input: Parallel data input 2
.SR(1'b0) // 1-bit input: Active High Async Reset
);
IDDRE1 #(
.DDR_CLK_EDGE("SAME_EDGE"), // IDDRE1 mode (OPPOSITE_EDGE, SAME_EDGE, SAME_EDGE_PIPELINED)
.IS_CB_INVERTED(1'b1), // Optional inversion for CB
.IS_C_INVERTED(1'b1) // Optional inversion for C
)
IDDRE1_dq_inst (
.Q1(dq_i_r_p1[i]), // 1-bit output: Registered parallel output 1
.Q2(dq_i_r_p2[i]), // 1-bit output: Registered parallel output 2
.C(ddr_dqs_i), // 1-bit input: High-speed clock
.CB(~ddr_dqs_i), // 1-bit input: Inversion of High-speed clock C
.D(dq_i_r[i]), // 1-bit input: Serial Data Input
.R(1'b0) // 1-bit input: Active High Async Reset
);
IDELAYE3 #(
.CASCADE("NONE"), // Cascade setting (MASTER, NONE, SLAVE_END, SLAVE_MIDDLE)
.DELAY_FORMAT("TIME"), // Units of the DELAY_VALUE (COUNT, TIME)
.DELAY_SRC("IDATAIN"), // Delay input (DATAIN, IDATAIN)
.DELAY_TYPE("FIXED"), // Set the type of tap delay line (FIXED, VARIABLE, VAR_LOAD)
.DELAY_VALUE(75), // Input delay value setting
.IS_CLK_INVERTED(1'b1), // Optional inversion for CLK
.IS_RST_INVERTED(1'b0), // Optional inversion for RST
.REFCLK_FREQUENCY(1066.098), // IDELAYCTRL clock input frequency in MHz (200.0-2667.0)
.SIM_DEVICE("ULTRASCALE"), // Set the device version (ULTRASCALE, ULTRASCALE_PLUS, ULTRASCALE_PLUS_ES1,
// ULTRASCALE_PLUS_ES2)
.UPDATE_MODE("ASYNC") // Determines when updates to the delay will take effect (ASYNC, MANUAL, SYNC)
)
IDELAYE3_dq_inst (
.CASC_OUT(), // 1-bit output: Cascade delay output to ODELAY input cascade
.CNTVALUEOUT(), // 9-bit output: Counter value output
.DATAOUT(dq_i_r[i]), // 1-bit output: Delayed data output
.CASC_IN(1'b0), // 1-bit input: Cascade delay input from slave ODELAY CASCADE_OUT
.CASC_RETURN(1'b0), // 1-bit input: Cascade delay returning from slave ODELAY DATAOUT
.CE(1'b1), // 1-bit input: Active high enable increment/decrement input
.CLK(ddr_dqs_i), // 1-bit input: Clock input
.CNTVALUEIN(9'b0), // 9-bit input: Counter value input
.DATAIN(1'b0), // 1-bit input: Data input from the logic
.EN_VTC(1'b0), // 1-bit input: Keep delay constant over VT
.IDATAIN(ddr_dq_i[i]), // 1-bit input: Data input from the IOBUF
.INC(1'b0), // 1-bit input: Increment / Decrement tap delay input
.LOAD(1'b0), // 1-bit input: Load DELAY_VALUE input
.RST(1'b0) // 1-bit input: Asynchronous Reset to the DELAY_VALUE
);
end
endgenerate
ODDRE1 #(
.IS_C_INVERTED(1'b1), // Optional inversion for C
.IS_D1_INVERTED(1'b0), // Unsupported, do not use
.IS_D2_INVERTED(1'b0), // Unsupported, do not use
.SRVAL(1'b0) // Initializes the ODDRE1 Flip-Flops to the specified value (1'b0, 1'b1)
)
ODDRE1_cke_inst (
.Q(ddr_cke), // 1-bit output: Data output to IOB
.C(clk), // 1-bit input: High-speed clock input
.D1(ddr_cke_p1), // 1-bit input: Parallel data input 1
.D2(ddr_cke_p2), // 1-bit input: Parallel data input 1
.SR(1'b0) // 1-bit input: Active High Async Reset
);
//OBUFDS OBUFDS_dqs (
// .O(ddr_dqs_p), // 1-bit output: Diff_p output (connect directly to top-level port)
// .OB(ddr_dqs_n), // 1-bit output: Diff_n output (connect directly to top-level port)
// .I(ddr_dqs) // 1-bit input: Buffer input
// );
reg [15:0] ddr_addr_r;
reg [2:0] ddr_ba_r;
reg ddr_cas_n_r;
reg [0:0] ddr_cs_n_r;
// reg [0:0] ddr_dm_r; // no ref
reg [0:0] ddr_odt_r;
reg ddr_ras_n_r;
reg ddr_we_n_r;
reg ddr_dq_en_r;
reg ddr_dqs_en_r;
always @(negedge clk) begin
ddr_addr <= ddr_addr_r ;
ddr_ba <= ddr_ba_r ;
ddr_cas_n <= ddr_cas_n_r ;
ddr_cs_n <= ddr_cs_n_r ;
// ddr_dm <= ddr_dm_r ;
ddr_odt <= ddr_odt_r ;
ddr_ras_n <= ddr_ras_n_r ;
ddr_we_n <= ddr_we_n_r ;
ddr_dq_en <= ddr_dq_en_r;
ddr_dqs_en <= ddr_dqs_en_r;
end
reg [5:0] cs = 0, ns;
reg [31:0] initial_cnt = 0;
reg [31:0] initial_stable_cnt = 0;
reg [31:0] freerun_cnt = 0;
reg [5:0] trcd_cnt = 0;
reg [5:0] twl_cnt = 0;
reg [5:0] trl_cnt = 0;
reg [5:0] twr_cnt = 0;
reg [5:0] tRTP_cnt = 0;
reg [5:0] burst_cnt = 0;
reg [3:0] initial_cmd_ptr = 0;
reg [27:0] initial_cmd_seq[0:5] = '{NOP_CMD, MRS1_CMD, MRS2_CMD, MRS3_CMD, MRS4_CMD, ZQCL_CMD};
reg initial_finish = 0;
always @(negedge clk) begin
cs <= ns;
end
always @(*) begin
case (cs)
0: begin
if (initial_cnt == INITIAL_CYCLE) begin // wait 200us
ns = 1;
end else begin
ns = 0;
end
end
1: begin // wait 500us
if (initial_stable_cnt == INITIAL_STABLE_CYCLE) begin // wait 500us
ns = 2;
end else begin
ns = 1;
end
end
2: begin
ns = 3;
end
3: begin
if (freerun_cnt == FREE_CYCLE) begin
if (initial_finish) begin
ns = 4;
end else begin
ns = 2;
end
end else begin
ns = 3;
end
end
4: begin
if (wren_s) begin
ns = 5; // Goto ACTIVATE max(tRC, tRRD, tFAW/4), same bank ACTIVATE at least tRC, different bank ACTIVATE at least tRRD, no more than four bank ACT during tFAW (P161 Fig.67)
end else if (rden_s) begin
ns = 10; // READ Operation tCCD consecutive read
end else begin
ns = 4;
end
end
5: begin // WRITE ACTIVATE
if (trcd_cnt == 14) begin
ns = 6; // WRITE/READ Operation prior to tRCD after ACT
end else begin
ns = 5;
end
end
6: begin // WRITE WRITE-WRITE delay tCCD, DATA provided at posedge of DQS with latency AL+CWL in MR0 and MR2 , tWTR tWR P174 P176
if (twl_cnt == 10) begin // tCWL + tAL = 10 ddr_dq_o_r has extra one cycle delay -> 10 - 2
ns = 7;
end else begin
ns = 6;
end
end
7: begin // WRITE DATA WL latency
// if (ddr_dqs_i) begin // tDQSS = 0
if (burst_cnt == 4) begin // double burst == 8
ns = 8;
end else begin
ns = 7;
end
// end else begin
// ns = 7;
// end
end
8: begin // POSTEAMBLE
if (twr_cnt == 16) begin
ns = 9; // Write to ReCharge tWR >15ns ACT to ReCharge tRAS>33ns
end else begin
ns = 8;
end
end
9: begin // READ PRECHARGE
ns = 4;
end
10: begin // READ ACTIVATE
if (trcd_cnt == 14) begin
ns = 11; // WRITE/READ Operation prior to tRCD after ACT
end else begin
ns = 10;
end
end
11: begin // READ P166 Nonconsecutive READ
if (trl_cnt == 14 + 3) begin // AL + CL + ddr_pipe_delay(idelay,iddr
ns = 12;
end else begin
ns = 11;
end
end
12: begin // READ DATA CL latency
if (burst_cnt == 4) begin
ns = 13;
end else begin
ns = 12;
end
end
13: begin // READ POSTAMBLE
if (tRTP_cnt == 7) begin
ns = 14; // Read to ReCharge tRTP>max(7.5ns,4CK) ACT to ReCharge tRAS>33ns
end else begin
ns = 13;
end
end
14: begin // READ PRECHARGE
ns = 4;
end
default: begin
ns = 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
0: begin
initial_cnt <= initial_cnt + 1;
end
default: begin
initial_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
1: begin
initial_stable_cnt <= initial_stable_cnt + 1;
end
default: begin
initial_stable_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
3: begin
freerun_cnt <= freerun_cnt + 1;
end
default: begin
freerun_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
2: begin
if (initial_cmd_ptr == 6 - 1) begin
initial_finish <= 1;
end else begin
initial_finish <= 0;
end
initial_cmd_ptr <= initial_cmd_ptr + 1;
end
endcase
end
initial begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en, ddr_dq_en, ddr_cs_n, ddr_ras_n, ddr_cas_n, ddr_we_n, ddr_ba, ddr_addr, ddr_odt} <= NOP_CMD;
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= NOP_CMD;
end
always @(negedge clk) begin
case (ns)
5: begin
trcd_cnt <= trcd_cnt + 1;
end
10: begin
trcd_cnt <= trcd_cnt + 1;
end
default: begin
trcd_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
6: begin
twl_cnt <= twl_cnt + 1;
end
default: begin
twl_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
11: begin
trl_cnt <= trl_cnt + 1;
end
default: begin
trl_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
8: begin
twr_cnt <= twr_cnt + 1;
end
default: begin
twr_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
13: begin
tRTP_cnt <= tRTP_cnt + 1;
end
default: begin
tRTP_cnt <= 0;
end
endcase
end
always @(negedge clk) begin
case (ns)
7: begin
burst_cnt <= burst_cnt + 1; // write
end
12: begin
burst_cnt <= burst_cnt + 1; // read
end
default: begin
burst_cnt <= 0;
end
endcase
end
assign {wraddr_ba_s, wraddr_ra_s, wraddr_ca_s} = s_wraddr;
assign wrdata_s = s_wrdata;
assign wrstrb_s = s_wrstrb;
assign wren_s = s_wren;
assign {rdaddr_ba_s, rdaddr_ra_s, rdaddr_ca_s} = s_rdaddr;
assign s_rddata = rddata_r;
// assign rdstrb_s = s_rdstrb;
assign rden_s = s_rden;
always @(negedge clk) begin
case (ns)
5: begin
if (trcd_cnt == 0) begin
{wraddr_ba_r, wraddr_ra_r, wraddr_ca_r} = s_wraddr;
wrdata_r <= s_wrdata;
wrstrb_r <= s_wrstrb;
wren_r <= s_wren;
end
end
10: begin
if (trcd_cnt == 0) begin
{rdaddr_ba_r, rdaddr_ra_r, rdaddr_ca_r} = s_rdaddr;
// rddata_r <= s_rddata;
// rdstrb_r <= s_rdstrb;
rden_r <= s_rden;
end
end
endcase
end
always @(negedge clk) begin
case (ns)
0: begin
ddr_reset_n <= 1'b0;
{ddr_cke_p2, ddr_cke_p1} <= 2'b0;
ddr_dqs_en_r <= 1'b1;
ddr_dq_en_r <= 1'b1;
end
1: begin
ddr_reset_n <= 1'b1;
{ddr_cke_p2, ddr_cke_p1} <= 2'b0;
ddr_dqs_en_r <= 1'b1;
ddr_dq_en_r <= 1'b1;
end
2: begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= initial_cmd_seq[initial_cmd_ptr];
end
3: begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= NOP_CMD;
end
4: begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= NOP_CMD;
end
5: begin
if (trcd_cnt == 0) begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110011, wraddr_ba_s, wraddr_ra_s, 1'b0}; // ACT_CMD |
end else begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= NOP_CMD;
end
end
6: begin
if (twl_cnt == 0) begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11010100, wraddr_ba_r, 6'b0, wraddr_ca_r, 1'b0}; // WR_CMD |
end else begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11010111, 3'b000, 16'h0000, 1'b0}; //enable dqs clock NOP_CMD |
end
end
7: begin
if (burst_cnt == 0) begin
ddr_dqs_en_r <= 0;
ddr_dq_en_r <= 0;
ddr_dq_o_r_p1 <= wrdata_r;
ddr_dq_o_r_p2 <= 0;
ddr_dm_o_r_p1 <= ~wrstrb_r;
ddr_dm_o_r_p2 <= 1;
end else begin
ddr_dqs_en_r <= 0;
ddr_dq_en_r <= 0;
ddr_dq_o_r_p1 <= 0;
ddr_dq_o_r_p2 <= 0;
ddr_dm_o_r_p1 <= 1;
ddr_dm_o_r_p2 <= 1;
end
end
8: begin
if (twr_cnt == 0) begin
ddr_dqs_en_r <= 0;
ddr_dq_en_r <= 0;
end else begin
ddr_dqs_en_r <= 1;
ddr_dq_en_r <= 1;
end
ddr_dq_o_r_p1 <= 0;
ddr_dq_o_r_p2 <= 0;
ddr_dm_o_r_p1 <= 1;
ddr_dm_o_r_p2 <= 1;
end
9: begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110010, wraddr_ba_r, 16'h0000, 1'b0}; // PRECHARGE single bank PRE_CMD |
end
10: begin // READ ACTIVATE
if (trcd_cnt == 0) begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110011, rdaddr_ba_s, rdaddr_ra_s, 1'b0}; // ACT_CMD |
end else begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= NOP_CMD;
end
end
11: begin // READ CMD
if (trl_cnt == 0) begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110101, rdaddr_ba_r, 6'b0, rdaddr_ca_r, 1'b0}; // RD_CMD |
end else begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110111, 3'b000, 16'h0000, 1'b0}; //enable dqs clock NOP_CMD |
end
end
12: begin // READ DATA // tDQSQ(MAX) tQH
if (burst_cnt == 0) begin
rddata_r <= dq_i_r_p1;
end else begin
rddata_r <= 'bx;
end
end
13: begin // READ POSTAMBLE
rddata_r <= 'bz;
end
14: begin
{ddr_cke_p2, ddr_cke_p1, ddr_dqs_en_r, ddr_dq_en_r, ddr_cs_n_r, ddr_ras_n_r, ddr_cas_n_r, ddr_we_n_r, ddr_ba_r, ddr_addr_r, ddr_odt_r} <= {8'b11110010, rdaddr_ba_r, 16'h0000, 1'b0}; // PRECHARGE single bank PRE_CMD |
end
default: begin
ddr_reset_n <= 1'b1;
end
endcase
end
always @(*) begin
ddr_dqs_o = clk;
end
endmodule
上述代码在Vivado 2017.4中进行了仿真测试,可替换ddr示例工程中的example_top自行仿真。
对应激励如下。
initial begin
# 900000000;
repeat(100) @(negedge sys_clk_i);
s_wren <= 1;
s_wraddr <= {3'b110, 16'h4444, 10'h0};
s_wrdata <= 8'h66;
s_wrstrb <= 1'b1;
@(negedge sys_clk_i);
s_wren <= 0;
repeat(100) @(negedge sys_clk_i);
s_rden <= 1;
s_rdaddr <= {3'b110, 16'h4444, 10'h0};
@(negedge sys_clk_i);
s_rden <= 0;
end