还是E稍微有点意思,新周赛好像比预期要简单一些, _.
思路: 模拟
#include <bits/stdc++.h>
using namespace std;
int main() {
int res = 0;
for (int i = 0; i < 6; i++) {
int v;
cin >> v;
res += v;
}
cout << res << endl;
return 0;
}
思路: 计数+模拟
引入 26 * 26的状态,进行计数
这有个好处,就是天然排序,避免大内存存字符串并排序
#include <bits/stdc++.h>
using namespace std;
int main() {
// 26 * 26天然保序
int cnt[26][26] = {0};
string s;
cin >> s;
int n = s.length();
for (int i = 0; i < n - 1; i++) {
int p1 = s[i] - 'a';
int p2 = s[i + 1] - 'a';
cnt[p1][p2]++;
}
for (int i = 0; i < 26; i++) {
for (int j = 0; j < 26; j++) {
string ts = "";
ts.push_back((char)(i + 'a'));
ts.push_back((char)(j + 'a'));
for (int t = 0; t < cnt[i][j]; t++) {
cout << ts << endl;
}
}
}
}
思路: 模拟
引入保存每列高度的数组,然后模拟即可
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, m, k;
cin >> n >> m >> k;
vector<int> cols(m, n);
for (int i = 0; i < k; i++) {
int r, c;
cin >> r >> c;
if (cols[c - 1] >= n - r + 1) {
cols[c - 1]--;
}
}
for (int i = 0; i < n; i++) {
string r;
for (int j = 0; j < m; j++) {
r.push_back(cols[j] >= n - i ? '*' : '.');
}
cout << r << endl;
}
return 0;
}
思路: 滑窗
非常典的一道滑窗题,双指针维护即可
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
int main() {
int n;
int64 k;
cin >> n >> k;
vector<int64> pre(n + 1, 0);
vector<int> arr(n);
for (int i = 0; i < n; i++) {
cin >> arr[i];
pre[i + 1] = pre[i] + arr[i];
}
int64 res = 0LL;
int j = 0;
for (int i = 0; i < n; i++) {
while (j <= i && pre[i + 1] - pre[j] >= k) {
j++;
}
res += j;
}
cout << res << endl;
return 0;
}
思路: 找规律 + 组合数学
case给的非常良心
可以分类讨论,大概有4种类似的序列
arr1 = [偶数,偶数,偶数,偶数,偶数,偶数, …]
arr2 = [奇数,奇数,偶数,奇数,奇数,偶数,…]
arr3 = [奇数,偶数,奇数,奇数,偶数,奇数,…]
arr4 = [偶数,奇数,奇数,偶数,奇数,奇数,…]
奇数/偶数的分布,呈现强烈的规律
最终为这4种情况的组合方案和
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int64 mod = (long)1e9 + 7;
int64 ksm(int64 b, int64 v) {
int64 r = 1LL;
while (v > 0) {
if (v % 2 == 1) {
r = r * b % mod;
}
v /= 2;
b = b * b % mod;
}
return r;
}
int main() {
int n, k;
cin >> n >> k;
int k2 = k / 2, k1 = k - k2;
int64 r1 = ksm(k2, n);
int64 r2 = ksm(k2, n/3) * ksm(k1, n - n/3) % mod;
int64 r3 = ksm(k2, (n+1)/3) * ksm(k1, n - (n+1)/3) % mod;
int64 r4 = ksm(k2, (n+2)/3) * ksm(k1, n - (n+2)/3) % mod;
int64 res = (r1 + r2 + r3 + r4) % mod;
cout << res << endl;
return 0;
}
思路: 离散化+树状数组
也是一道非常典的题
因为存在负数,所以滑窗的基础已经被破坏了
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Main {
static class BIT {
int n;
int[] arr;
public BIT(int n) {
this.n = n;
this.arr = new int[n + 1];
}
int query(int p) {
int res = 0;
while (p > 0) {
res += arr[p];
p -= p & -p;
}
return res;
}
void update(int p, int d) {
while (p <= n) {
arr[p] += d;
p += p & -p;
}
}
}
public static void main(String[] args) {
AReader sc = new AReader();
int n = sc.nextInt();
long k = sc.nextLong();
long[] arr = new long[n];
long[] pre = new long[n + 1];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextLong();
pre[i + 1] = pre[i] + arr[i];
}
// 进行离散化
TreeSet<Long> ids = new TreeSet<>();
for (long v: pre) {
ids.add(v);
}
int ptr = 0;
TreeMap<Long, Integer> hp = new TreeMap<>();
for (long kv: ids) {
hp.put(kv, ++ptr);
}
BIT bit = new BIT(ptr);
bit.update(hp.get(0l), 1);
long res = 0;
for (int i = 0; i < n; i++) {
long p = pre[i + 1];
// p - x >= k
// x <= p - k
Map.Entry<Long, Integer> ent = hp.floorEntry(p - k);
if (ent != null) {
res += bit.query(ent.getValue());
}
bit.update(hp.get(p), 1);
}
System.out.println(res);
}
static
class AReader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() {
try {
return reader.readLine();
} catch (IOException ex) {
return null;
}
}
public boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String nextLine = innerNextLine();
if (nextLine == null) {
return false;
}
tokenizer = new StringTokenizer(nextLine);
}
return true;
}
public String nextLine() {
tokenizer = new StringTokenizer("");
return innerNextLine();
}
public String next() {
hasNext();
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
// public BigInteger nextBigInt() {
// return new BigInteger(next());
// }
// 若需要nextDouble等方法,请自行调用Double.parseDouble包装
}
}
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
class BIT {
private:
int n;
vector<int> arr;
public:
BIT(int n): n(n), arr(n + 1, 0) {
}
int query(int p) {
int r = 0;
while (p > 0) {
r += arr[p];
p -= p & -p;
}
return r;
}
void update(int p, int d) {
while (p <= n) {
arr[p] += d;
p += p & -p;
}
}
};
int main() {
int n;
int64 k;
cin >> n >> k;
vector<int64> pre(n + 1, 0LL);
for (int i = 0; i < n; i++) {
int v;
cin >> v;
pre[i + 1] = pre[i] + v;
}
set<int64> ts;
for (int64 v: pre) {
ts.insert(v);
}
int ptr = 0;
map<int64, int> idMap;
for (int64 v: ts) {
idMap[v] = ++ptr;
}
int64 res = 0;
BIT bit(ptr);
bit.update(idMap[0], 1);
for (int i = 0; i < n; i++) {
int64 p = pre[i + 1];
if (idMap.find(p - k) != idMap.end()) {
res += bit.query(idMap[p - k]);
} else {
auto iter = idMap.lower_bound(p - k);
if (iter != idMap.end()) {
res += bit.query(iter->second - 1);
} else {
res += bit.query(ptr);
}
}
bit.update(idMap[p], 1);
}
cout << res << endl;
return 0;
}