视觉SLAM十四讲|【四】误差Jacobian推导

发布时间:2024年01月09日

视觉SLAM十四讲|【四】误差Jacobian推导

预积分误差递推公式

ω = 1 2 ( ( ω b k + n k g ? b k g ) + ( w b k + 1 + n k + 1 g ? b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21?((ωbk?+nkg??bkg?)+(wbk+1?+nk+1g??bk+1g?))
其中, w b k w_b^k wbk? k k k时刻下body坐标系的角速度, n k g n_k^g nkg? k k k时刻下陀螺仪白噪声, b k g b_k^g bkg? k k k时刻下陀螺仪偏置量。 n k a n_k^a nka? k k k时刻下加速度白噪声, b k a b_k^a bka? k k k时刻下加速度偏置量。 k + 1 k+1 k+1时刻下记号同理。
q b i b k + 1 = q b i b k ? [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbi?bk+1??=qbi?bk???[1,21?ωδt]T
a = 1 2 ( q b i b k ( a b k + n b k ? b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 ? b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21?(qbi?bk??(abk?+nbk??bka?)+qbi?bk+1??(abk+1?+nbk+1??bk+1a?))
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbi?bk+1??=αbi?bk??+βbi?bk??δt+21?aδt2
β b i b k + 1 = β b i b k + a δ t \beta_{b_i b_{k+1}} = \beta_{b_i b_{k}} + a\delta t βbi?bk+1??=βbi?bk??+aδt
b k + 1 a = b k a + n b k a δ t b_{k+1}^a = b_k^a + n_{b_k^a}\delta t bk+1a?=bka?+nbka??δt
b k + 1 g = b k g + n b k g δ t b_{k+1}^g = b_k^g + n_{b_k^g}\delta t bk+1g?=bkg?+nbkg??δt

示例1

f 15 = δ α b i b k + 1 δ b k g f_{15} = \frac{\delta \alpha_{b_i b_{k+1}}}{\delta b_k^g} f15?=δbkg?δαbi?bk+1???
由上面的递推公式可知
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbi?bk+1??=αbi?bk??+βbi?bk??δt+21?aδt2
其中, α b i b k \alpha_{b_i b_{k}} αbi?bk?? β b i b k δ t \beta_{b_i b_k}\delta t βbi?bk??δt都与 b k g b_k^g bkg?无关,可以省略,而很容易看出 a a a中含有 q b i b k + 1 q_{b_i b_{k+1}} qbi?bk+1??项,其中进一步含有对 b k g b_k^g bkg?相关的元素,必须保留。因此进一步推得
f 15 = δ 1 2 a δ t 2 δ b k g f_{15} = \frac{\delta \frac{1}{2} a \delta t^2}{\delta b_k^g} f15?=δbkg?δ21?aδt2?
其中,
a = 1 2 ( q b i b k ( a b k + n b k ? b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 ? b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21?(qbi?bk??(abk?+nbk??bka?)+qbi?bk+1??(abk+1?+nbk+1??bk+1a?))
q b i b k ( a b k + n b k ? b k a ) q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) qbi?bk??(abk?+nbk??bka?)依然与 b k g b_k^g bkg?无关,可以省略。
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 + n b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15?=δbkg?δ41?qbi?bk+1??(abk+1?+nbk+1??bk+1a?)δt2?
白噪声项不可知,拿掉
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15?=δbkg?δ41?qbi?bk+1??(abk+1??bk+1a?)δt2?
f 15 = δ 1 4 q b i b k + 1 ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15?=δbkg?δ41?qbi?bk+1??(abk+1??bk+1a?)δt2?
q b i b k + 1 = q b i b k ? [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbi?bk+1??=qbi?bk???[1,21?ωδt]T
f 15 = δ 1 4 q b i b k ? [ 1 , 1 2 ω δ t ] T ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15?=δbkg?δ41?qbi?bk???[1,21?ωδt]T(abk+1??bk+1a?)δt2?
其中
ω = 1 2 ( ( ω b k + n k g ? b k g ) + ( w b k + 1 + n k + 1 g ? b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21?((ωbk?+nkg??bkg?)+(wbk+1?+nk+1g??bk+1g?))
去除不可知的白噪声项
ω = 1 2 ( ( ω b k ? b k g ) + ( w b k + 1 ? b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k-b_k^g)+(w_b^{k+1}-b_{k+1}^g)) ω=21?((ωbk??bkg?)+(wbk+1??bk+1g?))
由于 k + 1 k+1 k+1时刻的信息并不知道,在此处如果不使用中值积分,直接使用初始值,有
ω = ω b k ? b k g \omega =\omega_b^k-b_k^g ω=ωbk??bkg?
f 15 = δ 1 4 q b i b k ? [ 1 , 1 2 ( ω b k ? b k g ) δ t ] T ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{\delta \frac{1}{4} q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k-b_k^g) \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta b_k^g} f15?=δbkg?δ41?qbi?bk???[1,21?(ωbk??bkg?)δt]T(abk+1??bk+1a?)δt2?
此时,为了便于计算,我们需要把四元数表示旋转转换为用旋转矩阵表示矩阵的旋转,得到
f 15 = 1 4 δ R b i b k exp ? ( ( ( w b k ? b k g ) δ t ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??exp(((wbk??bkg?)δt))(abk+1??bk+1a?)δt2?
观察式子,我们要想办法把 b k g b_k^g bkg?拆出来。回顾上一章,李代数旋转有性质
l n ( R e x p ( ? ∧ ) ) ∨ = l n ( R ) ∨ + J r ? 1 ? ln(Rexp(\phi^{\land}))^{\vee}=ln(R)^{\vee}+J_r^{-1}\phi ln(Rexp(?))=ln(R)+Jr?1??
类似的,对于非对数情况,有
exp ? ( ( ? + δ ? ) ∧ ) = exp ? ( ? ∧ ) exp ? ( ( J r ( ? ) δ ? ) ∧ ) \exp( (\phi + \delta\phi)^{\wedge} )= \exp(\phi^{\wedge})\exp((J_r(\phi)\delta\phi)^{\wedge}) exp((?+δ?))=exp(?)exp((Jr?(?)δ?))
lim ? ? → 0 J r ( ? ) = I \lim_{\phi \rightarrow 0} J_r(\phi)=I ?0lim?Jr?(?)=I
exp ? ( ( ( w b k ? b k g ) δ t ) ∧ = exp ? ( ( w b k δ t ) ∧ ) exp ? ( ( J r ( w b k δ t ) ( ? b k g δ t ) ) ∧ ) \exp(((w_b^k-b_k^g)\delta t)^{\wedge}=\exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge}) exp(((wbk??bkg?)δt)=exp((wbk?δt))exp((Jr?(wbk?δt)(?bkg?δt)))
f 15 = 1 4 δ R b i b k exp ? ( ( ( w b k ? b k g ) δ t ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((w_b^k-b_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??exp(((wbk??bkg?)δt))(abk+1??bk+1a?)δt2?
f 15 = 1 4 δ R b i b k exp ? ( ( w b k δ t ) ∧ ) exp ? ( ( J r ( w b k δ t ) ( ? b k g δ t ) ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((w_b^k\delta t)^{\wedge})\exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??exp((wbk?δt))exp((Jr?(wbk?δt)(?bkg?δt)))(abk+1??bk+1a?)δt2?
w b k δ t → 0 w_b^k\delta t \rightarrow0 wbk?δt0
f 15 = 1 4 δ R b i b k exp ? ( ( J r ( w b k δ t ) ( ? b k g δ t ) ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((J_r(w_b^k\delta t)(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??exp((Jr?(wbk?δt)(?bkg?δt)))(abk+1??bk+1a?)δt2?
f 15 = 1 4 δ R b i b k exp ? ( ( ? b k g δ t ) ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp((-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??exp((?bkg?δt)))(abk+1??bk+1a?)δt2?
f 15 = 1 4 δ R b i b k ( I + ( ? b k g δ t ) ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (I+(-b_k^g \delta t))^{\wedge})(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??(I+(?bkg?δt)))(abk+1??bk+1a?)δt2?
f 15 = 1 4 δ R b i b k ( ? b k g δ t ) ∧ ( a b k + 1 ? b k + 1 a ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (-b_k^g \delta t)^{\wedge}(a_b^{k+1} - b_{k+1}^a)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??(?bkg?δt)(abk+1??bk+1a?)δt2?
使用伴随性质,有
f 15 = 1 4 δ R b i b k ( a b k + 1 ? b k + 1 a ) ∧ ( b k g δ t ) δ t 2 δ b k g f_{15}=\frac{1}{4} \frac{\delta R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge}(b_k^g \delta t)\delta t^2}{\delta b_k^g} f15?=41?δbkg?δRbi?bk??(abk+1??bk+1a?)(bkg?δt)δt2?
f 15 = 1 4 R b i b k ( a b k + 1 ? b k + 1 a ) ∧ δ t 2 δ t f_{15}=\frac{1}{4} R_{b_i b_k} (a_b^{k+1} - b_{k+1}^a)^{\wedge} \delta t^2 \delta t f15?=41?Rbi?bk??(abk+1??bk+1a?)δt2δt

示例2

g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12?=δnkg?δαbi?bk+1???
一看 n k g n_k^g nkg?就知道又要找和旋转有关的量了。回顾递推公式,有
ω = 1 2 ( ( ω b k + n k g ? b k g ) + ( w b k + 1 + n k + 1 g ? b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21?((ωbk?+nkg??bkg?)+(wbk+1?+nk+1g??bk+1g?))
q b i b k + 1 = q b i b k ? [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbi?bk+1??=qbi?bk???[1,21?ωδt]T
a = 1 2 ( q b i b k ( a b k + n b k ? b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 ? b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21?(qbi?bk??(abk?+nbk??bka?)+qbi?bk+1??(abk+1?+nbk+1??bk+1a?))
α b i b k + 1 = α b i b k + β b i b k δ t + 1 2 a δ t 2 \alpha_{b_i b_{k+1}} = \alpha_{b_i b_{k}} + \beta_{b_i b_k} \delta t + \frac{1}{2}a \delta t^2 αbi?bk+1??=αbi?bk??+βbi?bk??δt+21?aδt2

g 12 = δ α b i b k + 1 δ n k g g_{12}=\frac{\delta \alpha_{b_i b_{k+1}}}{\delta n_k^g} g12?=δnkg?δαbi?bk+1???
g 12 = δ 1 2 a δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{2}a \delta t^2}{\delta n_k^g} g12?=δnkg?δ21?aδt2?
a = 1 2 ( q b i b k ( a b k + n b k ? b k a ) + q b i b k + 1 ( a b k + 1 + n b k + 1 ? b k + 1 a ) ) a = \frac{1}{2}(q_{b_i b_{k}} (a_b^k + n_b^k -b_k^a) + q_{b_i b_{k+1}} (a_b^{k+1} + n_b^{k+1} - b_{k+1}^a)) a=21?(qbi?bk??(abk?+nbk??bka?)+qbi?bk+1??(abk+1?+nbk+1??bk+1a?))
g 12 = δ 1 4 q b i b k + 1 ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_{k+1}} (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=δnkg?δ41?qbi?bk+1??(abk+1??bk+1a?)δt2?
又因为
q b i b k + 1 = q b i b k ? [ 1 , 1 2 ω δ t ] T q_{b_i b_{k+1}} = q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T qbi?bk+1??=qbi?bk???[1,21?ωδt]T
所以有
g 12 = δ 1 4 q b i b k ? [ 1 , 1 2 ω δ t ] T ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} \omega \delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=δnkg?δ41?qbi?bk???[1,21?ωδt]T(abk+1??bk+1a?)δt2?
ω = 1 2 ( ( ω b k + n k g ? b k g ) + ( w b k + 1 + n k + 1 g ? b k + 1 g ) ) \omega = \frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g)) ω=21?((ωbk?+nkg??bkg?)+(wbk+1?+nk+1g??bk+1g?))
g 12 = δ 1 4 q b i b k ? [ 1 , 1 2 ( ω b k + 1 2 n k g ) δ t ] T ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{\delta \frac{1}{4}q_{b_i b_k} \otimes [1, \frac{1}{2} (\omega_b^k+\frac{1}{2}n_k^g)\delta t]^T (a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=δnkg?δ41?qbi?bk???[1,21?(ωbk?+21?nkg?)δt]T(abk+1??bk+1a?)δt2?
g 12 = 1 4 δ R b i b k exp ? ( ( ( ω b k + 1 2 n k g ) δ t ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} \exp(((\omega_b^k+\frac{1}{2}n_k^g)\delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=41?δnkg?δRbi?bk??exp(((ωbk?+21?nkg?)δt))(abk+1??bk+1a?)δt2?
g 12 = 1 4 δ R b i b k ( exp ? ( ( ω b k δ t ) ∧ ) ) ( exp ? ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k} (\exp((\omega_b^k\delta t)^{\wedge}))(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=41?δnkg?δRbi?bk??(exp((ωbk?δt)))(exp((Jr?(ωbk?δt)21?nkg?δt)))(abk+1??bk+1a?)δt2?
g 12 = 1 4 δ R b i b k ( exp ? ( ( J r ( ω b k δ t ) 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((J_r(\omega_b^k\delta t)\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=41?δnkg?δRbi?bk??(exp((Jr?(ωbk?δt)21?nkg?δt)))(abk+1??bk+1a?)δt2?
g 12 = 1 4 δ R b i b k ( exp ? ( ( 1 2 n k g δ t ) ∧ ) ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}(\exp((\frac{1}{2}n_k^g \delta t)^{\wedge}))(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=41?δnkg?δRbi?bk??(exp((21?nkg?δt)))(abk+1??bk+1a?)δt2?
g 12 = 1 4 δ R b i b k ( ( 1 2 n k g δ t ) ∧ ) ( a b k + 1 ? b k + 1 a ) δ t 2 δ n k g g_{12}=\frac{1}{4} \frac{\delta R_{b_i b_k}((\frac{1}{2}n_k^g \delta t)^{\wedge})(a_b^{k+1} - b_{k+1}^a) \delta t^2}{\delta n_k^g} g12?=41?δnkg?δRbi?bk??((21?nkg?δt))(abk+1??bk+1a?)δt2?
g 12 = ? 1 4 δ R b i b k ( a b k + 1 ? b k + 1 a ) ∧ ( 1 2 n k g δ t ) δ t 2 δ n k g g_{12}=-\frac{1}{4} \frac{\delta R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2}n_k^g \delta t)\delta t^2}{\delta n_k^g} g12?=?41?δnkg?δRbi?bk??(abk+1??bk+1a?)(21?nkg?δt)δt2?
g 12 = ? 1 4 R b i b k ( a b k + 1 ? b k + 1 a ) ∧ ( 1 2 δ t ) δ t 2 g_{12}=-\frac{1}{4} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\frac{1}{2} \delta t)\delta t^2 g12?=?41?Rbi?bk??(abk+1??bk+1a?)(21?δt)δt2
g 12 = ? 1 8 R b i b k ( a b k + 1 ? b k + 1 a ) ∧ ( δ t ) δ t 2 g_{12}=-\frac{1}{8} R_{b_i b_k}(a_b^{k+1} - b_{k+1}^a)^{\wedge} (\delta t)\delta t^2 g12?=?81?Rbi?bk??(abk+1??bk+1a?)(δt)δt2

Levenberg-Marquardt方法证明

Levenberg (1944) 和 Marquardt (1963) 先后对高斯牛顿法进行了改进,求解过程中引入了阻尼因子
( J T J + μ I ) Δ x l m = ? J T f , μ > 0 (J^TJ+\mu I) \Delta x_{lm} = -J^Tf,\mu >0 (JTJ+μI)Δxlm?=?JTf,μ>0
F ( x ) = 1 2 ∑ i ( f i ( x ) ) 2 F(x)=\frac{1}{2} \sum_i (f_i(x))^2 F(x)=21?i?(fi?(x))2
J = δ f δ x J = \frac{\delta f}{\delta x} J=δxδf?
F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F(x)=(JTf)T
F ′ ′ ( x ) = J T J F''(x)=J^T J F′′(x)=JTJ

求证

J T J = V T Λ V J^TJ = V^T \Lambda V JTJ=VTΛV
Δ x l m = ? ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm?=?j=1n?λj?+μvjT?FT?vj?
由原来的式子
( J T J + μ I ) Δ x l m = ? J T f (J^TJ+\mu I) \Delta x_{lm} = -J^Tf (JTJ+μI)Δxlm?=?JTf
进行代换有
( V T Λ V + μ I ) Δ x l m = ? J T f (V^T \Lambda V+\mu I) \Delta x_{lm} = -J^Tf (VTΛV+μI)Δxlm?=?JTf
( V T Λ V + μ V T V ) Δ x l m = ? J T f (V^T \Lambda V+\mu V^T V) \Delta x_{lm} = -J^Tf (VTΛV+μVTV)Δxlm?=?JTf
( V T Λ V + V T μ V ) Δ x l m = ? J T f (V^T \Lambda V+V^T\mu V) \Delta x_{lm} = -J^Tf (VTΛV+VTμV)Δxlm?=?JTf
( V T Λ V + V T μ I V ) Δ x l m = ? J T f (V^T \Lambda V+V^T\mu IV) \Delta x_{lm} = -J^Tf (VTΛV+VTμIV)Δxlm?=?JTf
( V T ( Λ + μ I ) V ) Δ x l m = ? J T f (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -J^Tf (VT(Λ+μI)V)Δxlm?=?JTf
因为
F ′ ( x ) = ( J T f ) T F'(x)=(J^Tf)^T F(x)=(JTf)T
故有
( V T ( Λ + μ I ) V ) Δ x l m = ? F ′ T (V^T (\Lambda + \mu I) V) \Delta x_{lm} = -F'^T (VT(Λ+μI)V)Δxlm?=?FT
V = [ v 1 , v 2 , . . . v n ] V = [v_1, v_2, ... v_n] V=[v1?,v2?,...vn?]
其中 v j v_j vj?为列向量
V T = [ v 1 T , v 2 T , . . . v n T ] T V^T = [v_1^T, v_2^T, ... v_n^T]^T VT=[v1T?,v2T?,...vnT?]T
Λ + μ I = [ λ 1 + μ λ 2 + μ λ 3 + μ . . . λ n + μ ] \Lambda + \mu I = \begin{bmatrix} \lambda_1+\mu & & & & \\ & \lambda_2+\mu & & & \\ & & \lambda_3+\mu & & \\ & & & ... & \\ & & & & \lambda_n+\mu \end{bmatrix} Λ+μI= ?λ1?+μ?λ2?+μ?λ3?+μ?...?λn?+μ? ?
记为
D i a g ( λ i + μ ) Diag(\lambda_i+\mu) Diag(λi?+μ)
V T D i a g ( λ i + μ ) V Δ x l m = ? F ′ T V^TDiag(\lambda_i+\mu)V \Delta x_{lm} = -F'^T VTDiag(λi?+μ)VΔxlm?=?FT
得证
Δ x l m = ? ∑ j = 1 n v j T F ′ T λ j + μ v j \Delta x_{lm} = -\sum_{j=1}^n \frac{v_j^T F'^T}{\lambda_j + \mu} v_j Δxlm?=?j=1n?λj?+μvjT?FT?vj?

文章来源:https://blog.csdn.net/qq_43443531/article/details/135466289
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。