深度生成模型(Deep Generative Models)是一类利用深度学习方法生成新样本的模型。这些模型通常被用于生成与训练数据集相似的新数据,例如图像、文本或音频。深度生成模型的两个主要类型是生成对抗网络(GANs)和变分自编码器(VAEs)。
GANs是由生成器和判别器组成的框架,它们相互博弈以达到生成逼真样本的目标。具体而言,GANs包括以下要素:
训练过程中,生成器和判别器相互对抗,生成器试图欺骗判别器,而判别器试图正确地分类样本。这种对抗训练的结果是生成器能够生成更逼真的样本。
VAEs是一种概率生成模型,它试图通过学习数据的潜在分布来生成新的样本。VAEs包括以下组件:
VAEs与GANs不同,其训练过程侧重于最大化生成数据的边缘似然。这意味着VAEs试图学习数据的潜在分布,使得从这个分布中采样的样本看起来像真实数据。
总体而言,深度生成模型在计算机视觉、自然语言处理和其他生成式任务中取得了显著的成就,并且对于模拟和生成复杂数据的任务具有广泛的应用。