故障诊断模型 | Maltab实现PSO-BP粒子群算法优化BP神经网络的故障诊断
在机器学习领域,我们常常需要通过训练数据来学习一个函数模型,以便在未知的数据上进行预测或分类。传统的神经网络模型需要大量的参数调整和迭代优化,学习效率很低。在混合算法中,需要优化的对象(粒子)是 BP 神经网络的权值和值。首先应把要优化的神经网络的全部权值和闽值构成一个实数数组,并赋予它们 [0,1之间的随机数。然后,按照选定的网络结构,用前向算法计算出对应于每组输入样本的神经网络输出。这里BP网络的激活函数都选为sigmoid 函数然后用改进PSO算法搜索出最优位置