最近某加拿大籍贯的 rapper 被曝私生活不检点,且极有可能涉及诱X未成年少女,成为一个 raper。
当然至于是否属实,其实一个人是否是海王,微信、QQ 聊天记录里面记得清清楚楚。再上升到刑事案件的时候,TX 完全可以审查所有的历史记录。腾讯视频和某电鳗解约,也不见得毫无根据,毕竟利益相关。
但是我在整个过程中却发现两个非常值得注意的地方:
(1)其绯闻女友小怡同学,被骂到清空所有社交平台。作为吃瓜大户的 X 博,难道只会服务器瘫痪,不知道敏感词过滤吗?
(2)举报者都美竹收到大量血|腥的照片,难道各大天天吹人工智能的平台,也没有过滤的功能吗?
当然了,对于人工智能我一无所知。
但是对于敏感词,最近写了一个小工具,如果各大平台需要的话,已经开源,欢迎自取。
至少可以把美丽的中国话脱敏下面的样子:
你 XXX 的,我 XXX 你 XXX,你 XXXX,XXX!!XXX!
基于 DFA 算法实现,目前敏感词库内容收录 6W+(源文件 18W+,经过一次删减)。
后期将进行持续优化和补充敏感词库,并进一步提升算法的性能。
希望可以细化敏感词的分类,感觉工作量比较大,暂时没有进行。
这里说一下愿景吧,愿景是成为第一好用的敏感词工具。
当然,第一总是空虚的。
6W+ 词库,且不断优化更新
基于 DFA 算法,性能较好
基于 fluent-api 实现,使用优雅简洁
支持敏感词的判断、返回、脱敏等常见操作
支持全角半角互换
支持英文大小写互换
支持数字常见形式的互换
支持中文繁简体互换
支持英文常见形式的互换
支持用户自定义敏感词和白名单
支持数据的数据动态更新,实时生效
JDK1.7+
Maven 3.x+
<dependency>
<groupId>com.github.houbb</groupId>
<artifactId>sensitive-word</artifactId>
<version>0.0.15</version>
</dependency>
SensitiveWordHelper
作为敏感词的工具类,核心方法如下:
方法 | 参数 | 返回值 | 说明 |
---|---|---|---|
contains(String) | 待验证的字符串 | 布尔值 | 验证字符串是否包含敏感词 |
findAll(String) | 待验证的字符串 | 字符串列表 | 返回字符串中所有敏感词 |
replace(String, char) | 使用指定的 char 替换敏感词 | 字符串 | 返回脱敏后的字符串 |
replace(String) | 使用 * 替换敏感词 | 字符串 | 返回脱敏后的字符串 |
所有测试案例参见 SensitiveWordHelperTest
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(SensitiveWordHelper.contains(text));
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("五星红旗", word);
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星红旗, 毛主席, 天安门]", wordList.toString());
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text);
Assert.assertEquals("****迎风飘扬,***的画像屹立在***前。", result);
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
String result = SensitiveWordHelper.replace(text, '0');
Assert.assertEquals("0000迎风飘扬,000的画像屹立在000前。", result);
后续的诸多特性,主要是针对各种针对各种情况的处理,尽可能的提升敏感词命中率。
这是一场漫长的攻防之战。
final String text = "fuCK the bad words.";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuCK", word);
final String text = "fuck the bad words.";
String word = SensitiveWordHelper.findFirst(text);
Assert.assertEquals("fuck", word);
这里实现了数字常见形式的转换。
final String text = "这个是我的微信:9?二肆??③⑸⒋?㈤五";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[9?二肆??③⑸⒋?㈤五]", wordList.toString());
final String text = "我爱我的祖国和五星紅旗。";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[五星紅旗]", wordList.toString());
final String text = "??c? the bad words";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[??c?]", wordList.toString());
final String text = "???f?u??c?? the bad words";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[???f?u??c??]", wordList.toString());
final String text = "楼主好人,邮箱 sensitiveword@xx.com";
List<String> wordList = SensitiveWordHelper.findAll(text);
Assert.assertEquals("[sensitiveword@xx.com]", wordList.toString());
上面的特性默认都是开启的,有时业务需要灵活定义相关的配置特性。
所以 v0.0.14 开放了属性配置。
为了让使用更加优雅,统一使用 fluent-api 的方式定义。
用户可以使用 SensitiveWordBs
进行如下定义:
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.ignoreCase(true)
.ignoreWidth(true)
.ignoreNumStyle(true)
.ignoreChineseStyle(true)
.ignoreEnglishStyle(true)
.ignoreRepeat(true)
.enableNumCheck(true)
.enableEmailCheck(true)
.enableUrlCheck(true)
.init();
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(wordBs.contains(text));
其中各项配置的说明如下:
序号 | 方法 | 说明 |
---|---|---|
1 | ignoreCase | 忽略大小写 |
2 | ignoreWidth | 忽略半角圆角 |
3 | ignoreNumStyle | 忽略数字的写法 |
4 | ignoreChineseStyle | 忽略中文的书写格式 |
5 | ignoreEnglishStyle | 忽略英文的书写格式 |
6 | ignoreRepeat | 忽略重复词 |
7 | enableNumCheck | 是否启用数字检测。默认连续 8 位数字认为是敏感词 |
8 | enableEmailCheck | 是有启用邮箱检测 |
9 | enableUrlCheck | 是否启用链接检测 |
有时候我们希望将敏感词的加载设计成动态的,比如控台修改,然后可以实时生效。
v0.0.13 支持了这种特性。
为了实现这个特性,并且兼容以前的功能,我们定义了两个接口。
接口如下,可以自定义自己的实现。
返回的列表,表示这个词是一个敏感词。
/**
* 拒绝出现的数据-返回的内容被当做是敏感词
* @author binbin.hou
* @since 0.0.13
*/
public interface IWordDeny {
/**
* 获取结果
* @return 结果
* @since 0.0.13
*/
List<String> deny();
}
比如:
public class MyWordDeny implements IWordDeny {
@Override
public List<String> deny() {
return Arrays.asList("我的自定义敏感词");
}
}
接口如下,可以自定义自己的实现。
返回的列表,表示这个词不是一个敏感词。
/**
* 允许的内容-返回的内容不被当做敏感词
* @author binbin.hou
* @since 0.0.13
*/
public interface IWordAllow {
/**
* 获取结果
* @return 结果
* @since 0.0.13
*/
List<String> allow();
}
如:
public class MyWordAllow implements IWordAllow {
@Override
public List<String> allow() {
return Arrays.asList("五星红旗");
}
}
接口自定义之后,当然需要指定才能生效。
为了让使用更加优雅,我们设计了引导类 SensitiveWordBs
。
可以通过 wordDeny() 指定敏感词,wordAllow() 指定非敏感词,通过 init() 初始化敏感词字典。
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(WordDenys.system())
.wordAllow(WordAllows.system())
.init();
final String text = "五星红旗迎风飘扬,毛主席的画像屹立在天安门前。";
Assert.assertTrue(wordBs.contains(text));
备注:init() 对于敏感词 DFA 的构建是比较耗时的,一般建议在应用初始化的时候只初始化一次。而不是重复初始化!
我们可以测试一下自定义的实现,如下:
String text = "这是一个测试,我的自定义敏感词。";
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(new MyWordDeny())
.wordAllow(new MyWordAllow())
.init();
Assert.assertEquals("[我的自定义敏感词]", wordBs.findAll(text).toString());
这里只有 我的自定义敏感词
是敏感词,而 测试
不是敏感词。
当然,这里是全部使用我们自定义的实现,一般建议使用系统的默认配置+自定义配置。
可以使用下面的方式。
WordDenys.chains()
方法,将多个实现合并为同一个 IWordDeny。
WordAllows.chains()
方法,将多个实现合并为同一个 IWordAllow。
例子:
String text = "这是一个测试。我的自定义敏感词。";
IWordDeny wordDeny = WordDenys.chains(WordDenys.system(), new MyWordDeny());
IWordAllow wordAllow = WordAllows.chains(WordAllows.system(), new MyWordAllow());
SensitiveWordBs wordBs = SensitiveWordBs.newInstance()
.wordDeny(wordDeny)
.wordAllow(wordAllow)
.init();
Assert.assertEquals("[我的自定义敏感词]", wordBs.findAll(text).toString());
这里都是同时使用了系统默认配置,和自定义的配置。
实际使用中,比如可以在页面配置修改,然后实时生效。
数据存储在数据库中,下面是一个伪代码的例子,可以参考 SpringSensitiveWordConfig.java
要求,版本 v0.0.15 及其以上。
简化伪代码如下,数据的源头为数据库。
MyDdWordAllow 和 MyDdWordDeny 是基于数据库为源头的自定义实现类。
@Configuration
public class SpringSensitiveWordConfig {
@Autowired
private MyDdWordAllow myDdWordAllow;
@Autowired
private MyDdWordDeny myDdWordDeny;
/**
* 初始化引导类
* @return 初始化引导类
* @since 1.0.0
*/
@Bean
public SensitiveWordBs sensitiveWordBs() {
SensitiveWordBs sensitiveWordBs = SensitiveWordBs.newInstance()
.wordAllow(WordAllows.chains(WordAllows.system(), myDdWordAllow))
.wordDeny(myDdWordDeny)
// 各种其他配置
.init();
return sensitiveWordBs;
}
}
敏感词库的初始化较为耗时,建议程序启动时做一次 init 初始化。
为了保证敏感词修改可以实时生效且保证接口的尽可能简化,此处没有新增 add/remove 的方法。
而是在调用 sensitiveWordBs.init()
的时候,根据 IWordDeny+IWordAllow 重新构建敏感词库。
因为初始化可能耗时较长(秒级别),所有优化为 init 未完成时不影响旧的词库功能,完成后以新的为准。
@Component
public class SensitiveWordService {
@Autowired
private SensitiveWordBs sensitiveWordBs;
/**
* 更新词库
*
* 每次数据库的信息发生变化之后,首先调用更新数据库敏感词库的方法。
* 如果需要生效,则调用这个方法。
*
* 说明:重新初始化不影响旧的方法使用。初始化完成后,会以新的为准。
*/
public void refresh() {
// 每次数据库的信息发生变化之后,首先调用更新数据库敏感词库的方法,然后调用这个方法。
sensitiveWordBs.init();
}
}
如上,你可以在数据库词库发生变更时,需要词库生效,主动触发一次初始化 sensitiveWordBs.init();
。
其他使用保持不变,无需重启应用。
冠希哥微微一笑,想做事,先做人。
还是那句话,我们用法律捍卫自己,但是绝不允许有些人把所有的事情都娱乐化,以为钱可以买来一切。
值此百年之际,更不能让先辈的血白流。
何况是一个三无的加拿大戏子,建议依法处置,然后(ノ`Д)ノ(优美的中国话)