Transformer sample

发布时间:2023年12月18日
# -*- coding: utf-8 -*-
# @Time    : 2023/12/18 15:42
# @Author  : Xin
# @Email   : ZengX4@atlbattery.com
# @File    : transformer_example.py
# @Software: PyCharm
import math
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data

device = 'cpu'
# device = 'cuda'

# transformer epochs
epochs = 100
# epochs = 1000

# 这里我没有用什么大型的数据集,而是手动输入了两对中文→英语的句子
# 还有每个字的索引也是我手动硬编码上去的,主要是为了降低代码阅读难度
# S: Symbol that shows starting of decoding input
# E: Symbol that shows starting of decoding output
# P: Symbol that will fill in blank sequence if current batch data size is shorter than time steps

# 训练集
sentences = [
    # 中文和英语的单词个数不要求相同
    # enc_input                dec_input           dec_output
    ['我 有 一 个 女 朋 友', 'S i have a girl friend . ', 'i have a girl friend . E'],
    ['我 有 零 个 好 朋 友', 'S i have zero good friend .', 'i have zero good friend . E']
]

# 中文和英语的单词要分开建立词库
# Padding Should be Zero
src_vocab = {
    'P': 0, '我': 1, '有': 2, '一': 3, '个': 4, '好': 5, '朋': 6, '友': 7, '零': 8, '女': 9}
src_idx2word = {
    i: w for i, w in enumerate(src_vocab)}
src_vocab_size = len(src_vocab)

tgt_vocab = {
    'P': 0, 'i': 1, 'have': 2, 'a': 3, 'good': 4, 'friend': 5, 'zero': 6, 'girl': 7, 'S': 8, 'E': 9, '.': 10}
idx2word = {
    i: w for i, w in enumerate(tgt_vocab)}
tgt_vocab_size = len(tgt_vocab)

src_len = 8  # (源句子的长度)enc_input max sequence length
tgt_len = 7  # dec_input(=dec_output) max sequence length

# Transformer Parameters
d_model = 512  # Embedding Size(token embedding和position编码的维度)
d_ff = 2048  # FeedForward dimension (两次线性层中的隐藏层 512->2048->512,线性层是用来做特征提取的),当然最后会再接一个projection层
d_k = d_v = 64  # dimension of K(=Q), V(Q和K的维度需要相同,这里为了方便让K=V)
n_layers = 6  # number of Encoder of Decoder Layer(Block的个数)
n_heads = 8  # number of heads in Multi-Head Attention(有几套头)


# ==============================================================================================
# 数据构建


def make_data (sentences):
    """把单词序列转换为数字序列"""
    enc_inputs, dec_inputs, dec_outputs = [], [], []
    for i in range(len(sentences)):
        enc_input = [[src_vocab[n] for n in sentences[i][0].split()]]  # [[1, 2, 3, 4, 0], [1, 2, 3, 5, 0]]
        dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]]  # [[6, 1, 2, 3, 4, 8], [6, 1, 2, 3, 5, 8]]
        dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]]  # [[1, 2, 3, 4, 8, 7], [1, 2, 3, 5, 8, 7]]

        enc_inputs.extend(enc_input)
        dec_inputs.extend(dec_input)
        dec_outputs.extend(dec_output)

    return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs)


enc_inputs, dec_inputs, dec_outputs = make_data(sentences)


class MyDataSet(Data.Dataset):
    """自定义DataLoader"""

    def __init__ (self, enc_inputs, dec_inputs, dec_outputs):
        super(MyDataSet, self).__init__()
        self.enc_inputs = enc_inputs
        self.dec_inputs = dec_inputs
        self.dec_outputs = dec_outputs

    def __len__ (self):
        return self.enc_inputs.shape[0]

    def __getitem__ (self, idx):
        return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx]


loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)


# 这行代码创建了一个PyTorch数据加载器,用于在训练机器学习模型时加载数据。DataLoader是PyTorch的核心库torch.utils.data中的函数。它的作用是将
# 数据集(此处为MyDataSet类的实例,传入的enc_inputs、dec_inputs和dec_outputs作为数据)拆分成小批次以提高加载效率。
# 具体参数说明:
# batch_size: 2,每批加载的样本数。
# shuffle: True,是否打乱数据顺序。

class PositionalEncoding(nn.Module):
    def __init__ (self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        """
        在dropout函数中,参数p是指丢弃元素的概率。它决定了输入张量的元素在丢弃操作中被设置为零的比率。
        例如,如果p=0.1,那么10%的元素将在丢弃操作中被设置为零。
        """
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)
        """
        通过调用self.register_buffer('pe', pe),我们将这个张量注册为模型的一个可学习参数,
        这意味着这个张量在模型训练过程中不需要更新其梯度,即不需要在损失函数的计算中考虑这个张量的梯度。
        """

    def forward (self, x):
        """
        x: [seq_len, batch_size, d_model]
        """
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)


def get_attn_pad_mask(seq_q, seq_k):
    # pad mask的作用:在对value向量加权平均的时候,可以让pad对应的alpha_ij=0,这样注意力就不会考虑到pad向量
    """这里的q,k表示的是两个序列(跟注意力机制的q,k没有关系),例如encoder_inputs (x1,x2,..xm)和encoder_inputs (x1,x2..xm)
    encoder和decoder都可能调用这个函数,所以seq_len视情况而定
    seq_q: [batch_size, seq_len]
    seq_k: [batch_size, seq_len]
    seq_len could be src_len or it could be tgt_len
    seq_len in seq_q and seq_len in seq_k maybe not equal
    """
    batch_size, len_q = seq_q.size()  # 这个seq_q只是用来expand维度的
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token
    # 例如:seq_k = [[1,2,3,4,0], [1,2,3,5,0]]
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # [batch_size, 1, len_k], True is masked
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # [batch_size, len_q, len_k] 构成一个立方体(batch_size个这样的矩阵)


def get_attn_subsequence_mask(seq):
    """建议打印出来看看是什么样的输出(一目了然)
    seq: [batch_size, tgt_len]
    """
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
    # attn_shape: [batch_size, tgt_len, tgt_len]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1)  # 生成一个上三角矩阵
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()
    return subsequence_mask  # [batch_size, tgt_len, tgt_len]


class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()
    def forward(self, Q, K, V, attn_mask):
        """
        Q: [batch_size, n_heads, len_q, d_k]
        K: [batch_size, n_heads, len_k, d_k]
        V: [batch_size, n_heads, len_v(=len_k), d_v]
        attn_mask: [batch_size, n_heads, seq_len, seq_len]
        说明:在encoder-decoder的Attention层中len_q(q1,..qt)和len_k(k1,...km)可能不同
        """
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)  # scores : [batch_size, n_heads, len_q, len_k]
        # mask矩阵填充scores(用-1e9填充scores中与attn_mask中值为1位置相对应的元素)
        scores.masked_fill_(attn_mask, -1e9)  # Fills elements of self tensor with value where mask is True.

        attn = nn.Softmax(dim=-1)(scores)  # 对最后一个维度(v)做softmax
        # scores : [batch_size, n_heads, len_q, len_k] * V: [batch_size, n_heads, len_v(=len_k), d_v]
        context = torch.matmul(attn, V)  # context: [batch_size, n_heads, len_q, d_v]
        # context:[[z1,z2,...],[...]]向量, attn注意力稀疏矩阵(用于可视化的)
        return context, attn


class MultiHeadAttention(nn.Module):
    """这个Attention类可以实现:
    Encoder的Self-Attention
    Decoder的Masked Self-Attention
    Encoder-Decoder的Attention
    输入:seq_len x d_model
    输出:seq_len x d_model
    """
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)  # q,k必须维度相同,不然无法做点积
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        # 这个全连接层可以保证多头attention的输出仍然是seq_len x d_model
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
        """
        nn.Linear 函数是 PyTorch 模型中的一种全连接层 (fully connected layer) 的实现。
        它的作用是对输入数据进行线性变换,即 y = Wx + b,其中 W 是线性变换的系数矩阵,b 是偏移量,x 是输入数据。
        torch.nn.Linear(in_features, # 输入的神经元个数
           out_features, # 输出神经元个数
           bias=True # 是否包含偏置
           )
        """
    def forward(self, input_Q, input_K, input_V, attn_mask):
        """
        input_Q: [batch_size, len_q, d_model]
        input_K: [batch_size, len_k, d_model]
        input_V: [batch_size, len_v(=len_k), d_model]
        attn_mask: [batch_size, seq_len, seq_len]
        """
        residual, batch_size = input_Q, input_Q.size(0)
        # 下面的多头的参数矩阵是放在一起做线性变换的,然后再拆成多个头,这是工程实现的技巧
        # B: batch_size, S:seq_len, D: dim
        # (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, Head, W) -trans-> (B, Head, S, W)
        #           线性变换               拆成多头

        # Q: [batch_size, n_heads, len_q, d_k]
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2)
        # K: [batch_size, n_heads, len_k, d_k] # K和V的长度一定相同,维度可以不同
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2)
        # V: [batch_size, n_heads, len_v(=len_k), d_v]
        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2)

        # 因为是多头,所以mask矩阵要扩充成4维的
        # attn_mask: [batch_size, seq_len, seq_len] -> [batch_size, n_heads, seq_len, seq_len]
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)

        # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)
        # 下面将不同头的输出向量拼接在一起
        # context: [batch_size, n_heads, len_q, d_v] -> [batch_size, len_q, n_heads * d_v]
        context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v)

        # 这个全连接层可以保证多头attention的输出仍然是seq_len x d_model
        output = self.fc(context)  # [batch_size, len_q, d_model]
        return nn.LayerNorm(d_model).to(device)(output + residual), attn


class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False)
        )
    def forward(self, inputs):
        """
        inputs: [batch_size, seq_len, d_model]
        """
        residual = inputs
        output = self.fc(inputs)
        return nn.LayerNorm(d_model).to(device)(output + residual)  # [batch_size, seq_len, d_model]


class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, enc_inputs, enc_self_attn_mask):
        """
        enc_inputs: [batch_size, src_len, d_model]
        enc_self_attn_mask: [batch_size, src_len, src_len]  mask矩阵(pad mask or sequence mask)
        """
        # enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
        # 第一个enc_inputs * W_Q = Q
        # 第二个enc_inputs * W_K = K
        # 第三个enc_inputs * W_V = V
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs,
                                               enc_self_attn_mask)  # enc_inputs to same Q,K,V(未线性变换前)
        enc_outputs = self.pos_ffn(enc_outputs)
        # enc_outputs: [batch_size, src_len, d_model]
        return enc_outputs, attn


class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)  # token Embedding
        """
        Embedding解释
        例如:如果你有一个词语表(vocabulary),其中包含了3个词语:"dog", "cat", "bird"。并且你指定了src_vocab_size = 3
        和d_model = 5,那么这个Embedding层就可以将每一个词语表示成一个5维的实数向量,比如:"dog"
        可以表示为[0.1, 0.2, 0.3, 0.4, 0.5]。
        """
        self.pos_emb = PositionalEncoding(d_model)  # Transformer中位置编码时固定的,不需要学习
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])

    def forward(self, enc_inputs):
        """
        enc_inputs: [batch_size, src_len]
        """
        enc_outputs = self.src_emb(enc_inputs)  # [batch_size, src_len, d_model]
        enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1)  # [batch_size, src_len, d_model]
        # Encoder输入序列的pad mask矩阵
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)  # [batch_size, src_len, src_len]
        enc_self_attns = []  # 在计算中不需要用到,它主要用来保存你接下来返回的attention的值(这个主要是为了你画热力图等,用来看各个词之间的关系
        for layer in self.layers:  # for循环访问nn.ModuleList对象
            # 上一个block的输出enc_outputs作为当前block的输入
            # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
            enc_outputs, enc_self_attn = layer(enc_outputs,
                                               enc_self_attn_mask)  # 传入的enc_outputs其实是input,传入mask矩阵是因为你要做self attention
            enc_self_attns.append(enc_self_attn)  # 这个只是为了可视化
        return enc_outputs, enc_self_attns


class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()
        self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        """
        dec_inputs: [batch_size, tgt_len, d_model]
        enc_outputs: [batch_size, src_len, d_model]
        dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
        dec_enc_attn_mask: [batch_size, tgt_len, src_len]
        """
        # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs,
                                                        dec_self_attn_mask)  # 这里的Q,K,V全是Decoder自己的输入
        # dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs,
                                                      dec_enc_attn_mask)  # Attention层的Q(来自decoder) 和 K,V(来自encoder)
        dec_outputs = self.pos_ffn(dec_outputs)  # [batch_size, tgt_len, d_model]
        return dec_outputs, dec_self_attn, dec_enc_attn  # dec_self_attn, dec_enc_attn这两个是为了可视化的


class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)  # Decoder输入的embed词表
        self.pos_emb = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])  # Decoder的blocks

    def forward(self, dec_inputs, enc_inputs, enc_outputs):
        """
        dec_inputs: [batch_size, tgt_len]
        enc_inputs: [batch_size, src_len]
        enc_outputs: [batch_size, src_len, d_model]   # 用在Encoder-Decoder Attention层
        """
        dec_outputs = self.tgt_emb(dec_inputs)  # [batch_size, tgt_len, d_model]
        dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1).to(
            device)  # [batch_size, tgt_len, d_model]
        # Decoder输入序列的pad mask矩阵(这个例子中decoder是没有加pad的,实际应用中都是有pad填充的)
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).to(device)  # [batch_size, tgt_len, tgt_len]
        # Masked Self_Attention:当前时刻是看不到未来的信息的
        dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).to(
            device)  # [batch_size, tgt_len, tgt_len]

        # Decoder中把两种mask矩阵相加(既屏蔽了pad的信息,也屏蔽了未来时刻的信息)
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask),
                                      0).to(device)  # [batch_size, tgt_len, tgt_len]; torch.gt比较两个矩阵的元素,大于则返回1,否则返回0

        # 这个mask主要用于encoder-decoder attention层
        # get_attn_pad_mask主要是enc_inputs的pad mask矩阵(因为enc是处理K,V的,求Attention时是用v1,v2,..vm去加权的,要把pad对应的v_i的相关系数设为0,这样注意力就不会关注pad向量)
        #                       dec_inputs只是提供expand的size的
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)  # [batc_size, tgt_len, src_len]

        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
            # Decoder的Block是上一个Block的输出dec_outputs(变化)和Encoder网络的输出enc_outputs(固定)
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask,
                                                             dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        # dec_outputs: [batch_size, tgt_len, d_model]
        return dec_outputs, dec_self_attns, dec_enc_attns


class Transformer(nn.Module):
    def __init__(self):
        super(Transformer, self).__init__()
        # Transformer类继承自PyTorch的nn.Module类。
        # 通过在Transformer的构造函数中调用super(Transformer, self).init(),
        # 可以调用nn.Module的构造函数,以便初始化nn.Module的一些内部状态,以及设置Transformer类对象的一些公共属性。
        self.encoder = Encoder().to(device)
        self.decoder = Decoder().to(device)
        self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False).to(device)
    def forward(self, enc_inputs, dec_inputs):
        """Transformers的输入:两个序列
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, tgt_len]
        """
        # tensor to store decoder outputs
        # outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(self.device)

        # enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
        # 经过Encoder网络后,得到的输出还是[batch_size, src_len, d_model]
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [n_layers, batch_size, tgt_len, src_len]
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        # dec_outputs: [batch_size, tgt_len, d_model] -> dec_logits: [batch_size, tgt_len, tgt_vocab_size]
        dec_logits = self.projection(dec_outputs)
        return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns


model = Transformer().to(device)
# 这里的损失函数里面设置了一个参数 ignore_index=0,因为 "pad" 这个单词的索引为 0,这样设置以后,就不会计算 "pad" 的损失(因为本来 "pad" 也没有意义,不需要计算)
criterion = nn.CrossEntropyLoss(ignore_index=0)
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99)
# optimizer = optim.Adam(model.parameters(), lr=1e-9) # 用adam的话效果不好


for epoch in range(epochs):
    for enc_inputs, dec_inputs, dec_outputs in loader:
        """
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, tgt_len]
        dec_outputs: [batch_size, tgt_len]
        """
        enc_inputs, dec_inputs, dec_outputs = enc_inputs.to(device), dec_inputs.to(device), dec_outputs.to(device)
        # outputs: [batch_size * tgt_len, tgt_vocab_size]
        outputs, enc_self_attns, dec_self_attns, dec_enc_attns = model(enc_inputs, dec_inputs)
        loss = criterion(outputs, dec_outputs.view(-1))  # dec_outputs.view(-1):[batch_size * tgt_len * tgt_vocab_size]
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

def greedy_decoder(model, enc_input, start_symbol):
    """贪心编码
    For simplicity, a Greedy Decoder is Beam search when K=1. This is necessary for inference as we don't know the
    target sequence input. Therefore we try to generate the target input word by word, then feed it into the transformer.
    Starting Reference: http://nlp.seas.harvard.edu/2018/04/03/attention.html#greedy-decoding
    :param model: Transformer Model
    :param enc_input: The encoder input
    :param start_symbol: The start symbol. In this example it is 'S' which corresponds to index 8
    :return: The target input
    """
    enc_outputs, enc_self_attns = model.encoder(enc_input)
    dec_input = torch.zeros(1, 0).type_as(enc_input.data)  # 初始化一个空的tensor: tensor([], size=(1, 0), dtype=torch.int64)
    terminal = False
    next_symbol = start_symbol
    while not terminal:
        # 预测阶段:dec_input序列会一点点变长(每次添加一个新预测出来的单词)
        dec_input = torch.cat([dec_input.to(device), torch.tensor([[next_symbol]], dtype=enc_input.dtype).to(device)],
                              -1)
        dec_outputs, _, _ = model.decoder(dec_input, enc_input, enc_outputs)
        projected = model.projection(dec_outputs)
        prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
        # 增量更新(我们希望重复单词预测结果是一样的)
        # 我们在预测时会选择性忽略重复的预测的词,只摘取最新预测的单词拼接到输入序列中
        next_word = prob.data[-1]  # 拿出当前预测的单词(数字)。我们用x'_t对应的输出z_t去预测下一个单词的概率,不用z_1,z_2..z_{t-1}
        next_symbol = next_word
        if next_symbol == tgt_vocab["E"]:
            terminal = True
        # print(next_word)

    # greedy_dec_predict = torch.cat(
    #     [dec_input.to(device), torch.tensor([[next_symbol]], dtype=enc_input.dtype).to(device)],
    #     -1)
    greedy_dec_predict = dec_input[:, 1:]
    return greedy_dec_predict


# ==========================================================================================
# 预测阶段
# 测试集
sentences = [
    # enc_input                dec_input           dec_output
    ['我 有 一 个 女 朋 友', '', '']
]

enc_inputs, dec_inputs, dec_outputs = make_data(sentences)
test_loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True)
enc_inputs, _, _ = next(iter(test_loader))
print()
print("="*30)
print("利用训练好的Transformer模型将中文句子'我 有 一 个 女 朋 友' 翻译成英文句子: ")
for i in range(len(enc_inputs)):
    greedy_dec_predict = greedy_decoder(model, enc_inputs[i].view(1, -1).to(device), start_symbol=tgt_vocab["S"])
    print(enc_inputs[i], '->', greedy_dec_predict.squeeze())
    print([src_idx2word[t.item()] for t in enc_inputs[i]], '->',
          [idx2word[n.item()] for n in greedy_dec_predict.squeeze()])

文章来源:https://blog.csdn.net/weixin_38716567/article/details/135069484
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。