?? 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题,给检测带来一定的难度。
? ? ?🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。
? ? ? ?本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。
👑完整代码已打包上传至资源→低照度图像增强代码汇总资源-CSDN文库
目录
?
相关资料:?
- EnlightenGAN 论文:https://arxiv.org/abs/1906.06972
- EnlightenGAN 论文详细解读:《EnlightenGAN: Deep Light Enhancement withoutPaired Supervision》论文超详细解读(翻译+精读)
- EnlightenGAN 源码:https://github.com/VITA-Group/EnlightenGAN
目前,基于深度学习的低照度图像增强方法取得了一些不错的成效。但是一直以来存在着一个问题,就是它们大部分都属于监督学习,也就是说需要大量配对数据(paired data)来进行训练,但现实生活中,我们很难获取大量的同场景下的低光和正常光图像来作为数据对。
因此,作者和他的团队提出了一种无监督的生成对抗网络来实现图像增强,即EnlightenGAN。这个模型并不需要配对数据来进行训练,但却能在多种场景下表现良好。为了提高模型性能,同时也弥补数据未成对造成的一些不足,作者和他的团队提出了一系列的新处理方法,包括全局-局部判别器结构,自正则化感知损失,以及自正则注意机制。
下图是EnlightenGAN网络结构。
EnlightenGAN网络结构 = 生成器(带自注意力机制的U-Net)+ 判别器(全局-局部鉴别器)
首先,我们来看看生成器模块。
生成器模块就是一个引入了自注意力机制的U-Net,自正则化注意力图的生成方式如下:
把输入的RGB图像转为灰度图
将灰度图(I)归一化到 [ 0,1 ]
运算1 - I(element-wise difference 逐元素作差),突出暗部部分
得到了注意力图(attention map),重点关注暗部部分
可以理解为对于光照越弱的地方注意力越强。因为网络中得到的每个特征图大小都不一样,所以这里把注意力图resize为各中间的特征图对应的大小,然后对应相乘最后得到了我们的输出图像。
整个U-Net 生成器由8个卷积块组成,每个卷积块由两个3*3的卷积层和一个BN层和LeakReLU层。
为什么把ReLU层换为LeakyReLU层?
由于稀疏梯度虽然在大多数网络中通常是理想的目标,但是在GAN中,它会妨碍训练过程,影响GAN的稳定性,所以作者的网络中没有maxpool层和ReLU层,而是用LeakReLU层替代ReLU层。
此外,为了减小棋盘效应,作者用一个双线性上采样层+一个卷积层来代替原本的标准反卷积层。
棋盘效应:由于反卷积的”不均匀重叠“,会导致图像中的某部位比别的部位颜色深,造成的伪影看上去像棋盘格子一般。而这种”不均匀重叠“,是因为卷积核(kernel)尺寸不能被步长(stride)整除导致的。
相对论鉴别器函数:
全局鉴别器D和生成器G的损失函数:
局部鉴别器D和生成器G的损失函数:
自特征保持损失LSFP定义:
EnlightenGAN的整体损失函数:
这一部分我们主要讲EnlightenGAN模型的网络生成器这部分的核心,也就是models文件夹中的networks.py。
① pad_tensor
def pad_tensor(input):
height_org, width_org = input.shape[2], input.shape[3] #获取张量的高度和宽度
divide = 16
if width_org % divide != 0 or height_org % divide != 0:# 判断输入张量的宽度和高度是否不能被divide整除
width_res = width_org % divide
height_res = height_org % divide
if width_res != 0:
width_div = divide - width_res # 需要填充的宽度
pad_left = int(width_div / 2) # 填充的左侧宽度
pad_right = int(width_div - pad_left) # 填充的右侧宽度
else:
pad_left = 0
pad_right = 0
if height_res != 0:
height_div = divide - height_res # 需要填充的高度
pad_top = int(height_div / 2) # 填充的左侧高度
pad_bottom = int(height_div - pad_top) # 填充的右侧高度
else:
pad_top = 0
pad_bottom = 0
padding = nn.ReflectionPad2d((pad_left, pad_right, pad_top, pad_bottom)) # 在输入张量的四个边上进行反射填充
input = padding(input)
else:
pad_left = 0
pad_right = 0
pad_top = 0
pad_bottom = 0
height, width = input.data.shape[2], input.data.shape[3]
assert width % divide == 0, 'width cant divided by stride'
assert height % divide == 0, 'height cant divided by stride'
return input, pad_left, pad_right, pad_top, pad_bottom
这段代码的主要作用是对输入的二维张量进行填充,以确保其高度和宽度能够被指定的divide参数整除。
具体而言,该函数执行以下操作:
divide
整除,计算需要进行填充的数量,并使用反射填充(nn.ReflectionPad2d
)对输入进行填充。divide
整除,则不进行填充。主要参数含义:?
width_org
和 height_org
是输入张量的原始宽度和高度。divide
是用于指定张量宽度和高度整除性的参数。pad_left
、pad_right
、pad_top
和 pad_bottom
是填充的左、右、上、下四个方向的填充量。② pad_tensor_back
def pad_tensor_back(input, pad_left, pad_right, pad_top, pad_bottom):
height, width = input.shape[2], input.shape[3]
return input[:, :, pad_top: height - pad_bottom, pad_left: width - pad_right]
这段代码主要作用是与前面 pad_tensor
函数相对应的逆操作,用于反向去除填充。这个函数的目的是从填充后的张量中截取出原始尺寸的部分。
具体来说,函数通过切片操作,从填充后的张量中截取出原始尺寸(不包括填充的部分)的子张量。返回的结果就是去除填充后的张量,恢复到原始尺寸的部分。
这样的操作通常在对图像或特征图进行处理后,需要将其还原到原始尺寸时使用。这可以确保在网络的前向传播和反向传播过程中,输入和输出的尺寸保持一致。
③?weights_init
def weights_init(m):
classname = m.__class__.__name__ # 初始化权重
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02) # 卷积层权重正态分布初始化,均值为0,标准差为0.02
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02) # 批量归一化层正态分布初始化
m.bias.data.fill_(0) # 批量归一化层偏置项设置为0
这段代码主要作用是初始化神经网络模型中的权重。具体来说,它对卷积层和批量归一化层的权重进行初始化。
函数通过遍历模型的每个模块(m
),根据模块的类别进行不同的权重初始化。
具体做法如下:
(这样的初始化策略有助于在训练初期使得权重处于较小的范围,有助于网络的稳定训练。这是一种常见的初始化方法,尤其在使用卷积和批量归一化的深度学习模型中。)
④ get_norm_layer
def get_norm_layer(norm_type='instance'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
elif norm_type == 'synBN':
norm_layer = functools.partial(SynBN2d, affine=True)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm)
return norm_layer
这段代码主要作用是返回指定类型的归一化层。归一化层在深度学习中用于提高训练的稳定性和收敛速度。
函数接受一个参数 norm_type
,根据这个参数的值返回不同类型的归一化层。具体来说:
norm_type
的值为 'batch'
,则返回批量归一化层,并设置 affine
参数为 True
。norm_type
的值为 'instance'
,则返回实例归一化层,并设置 affine
参数为 False
。norm_type
的值为 'synBN'
,则返回一个自定义的 SynBN2d
归一化层,该归一化层也设置 affine
参数为 True
。norm_type
的值不是上述任何一种,则抛出 NotImplementedError
异常,表示未找到指定类型的归一化层。⑤ define_G
def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, gpu_ids=[], skip=False,
opt=None):
# 定义生成器(全局生成器或局部增强生成器)和特征编码器
netG = None
use_gpu = len(gpu_ids) > 0
norm_layer = get_norm_layer(norm_type=norm)
if use_gpu:
assert (torch.cuda.is_available())
if which_model_netG == 'resnet_9blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9,
gpu_ids=gpu_ids)
elif which_model_netG == 'resnet_6blocks':
netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6,
gpu_ids=gpu_ids)
elif which_model_netG == 'unet_128':
netG = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout,
gpu_ids=gpu_ids)
elif which_model_netG == 'unet_256':
netG = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout,
gpu_ids=gpu_ids, skip=skip, opt=opt)
elif which_model_netG == 'unet_512':
netG = UnetGenerator(input_nc, output_nc, 9, ngf, norm_layer=norm_layer, use_dropout=use_dropout,
gpu_ids=gpu_ids, skip=skip, opt=opt)
elif which_model_netG == 'sid_unet':
netG = Unet(opt, skip)
elif which_model_netG == 'sid_unet_shuffle':
netG = Unet_pixelshuffle(opt, skip)
elif which_model_netG == 'sid_unet_resize':
netG = Unet_resize_conv(opt, skip)
elif which_model_netG == 'DnCNN':
netG = DnCNN(opt, depth=17, n_channels=64, image_channels=1, use_bnorm=True, kernel_size=3)
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
if len(gpu_ids) >= 0:
netG.cuda(device=gpu_ids[0])
netG = torch.nn.DataParallel(netG, gpu_ids)
netG.apply(weights_init)
return netG
这段代码主要作用是定义了一个生成器网络的创建函数 define_G
。这个函数根据指定的参数创建不同类型的生成器网络,支持的生成器类型包括 ResNet 生成器、U-Net 生成器等。此外,函数也支持在 GPU 上运行,并对生成器进行权重初始化。
主要参数:
input_nc
:输入通道数。output_nc
:输出通道数。ngf
:生成器中特征图的数量。which_model_netG
:选择的生成器模型的名称。norm
:归一化层的类型('batch'、'instance'等)。use_dropout
:是否使用 dropout。gpu_ids
:指定在哪些 GPU 上运行。skip
:是否使用 skip connection(跳跃连接)。opt
:其他选项,可能用于某些生成器类型的参数设置。函数首先根据输入的 which_model_netG
参数选择相应的生成器模型。然后,根据其他参数,如归一化类型、是否使用 dropout 等,构建生成器。最后,将生成器应用权重初始化,如果指定了 GPU,将其移动到 GPU 上,并进行 DataParallel 包装。
⑥ define_D
def define_D(input_nc, ndf, which_model_netD,
n_layers_D=3, norm='batch', use_sigmoid=False, gpu_ids=[], patch=False):
# 定义多层鉴别器
netD = None
use_gpu = len(gpu_ids) > 0
norm_layer = get_norm_layer(norm_type=norm)
if use_gpu:
assert (torch.cuda.is_available())
if which_model_netD == 'basic':
netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid,
gpu_ids=gpu_ids)
elif which_model_netD == 'n_layers':
netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid,
gpu_ids=gpu_ids)
elif which_model_netD == 'no_norm':
netD = NoNormDiscriminator(input_nc, ndf, n_layers_D, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
elif which_model_netD == 'no_norm_4':
netD = NoNormDiscriminator(input_nc, ndf, n_layers_D, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
elif which_model_netD == 'no_patchgan':
netD = FCDiscriminator(input_nc, ndf, n_layers_D, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids, patch=patch)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' %
which_model_netD)
if use_gpu:
netD.cuda(device=gpu_ids[0])
netD = torch.nn.DataParallel(netD, gpu_ids)
netD.apply(weights_init)
return netD
这段代码主要作用是定义了一个判别器网络的创建函数 define_D
。这个函数根据指定的参数创建不同类型的判别器网络,支持的判别器类型包括基础的多层判别器、带有 n 层的判别器、无归一化的判别器等。
主要参数:
input_nc
:输入通道数。ndf
:判别器中特征图的数量。which_model_netD
:选择的判别器模型的名称。n_layers_D
:判别器的层数。norm
:归一化层的类型('batch'、'instance'等)。use_sigmoid
:是否使用 Sigmoid 函数作为激活函数。gpu_ids
:指定在哪些 GPU 上运行。patch
:是否使用 patchGAN 结构。函数首先根据输入的 which_model_netD
参数选择相应的判别器模型。然后,根据其他参数,如归一化类型、是否使用 Sigmoid 等,构建判别器。最后,将判别器应用权重初始化,如果指定了 GPU,将其移动到 GPU 上,并进行 DataParallel 包装。
⑦ print_network
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print(net)
print('Total number of parameters: %d' % num_params)
这段代码主要作用是用于打印神经网络的结构信息和总参数数量。
①class GANLoss
class GANLoss(nn.Module):
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
tensor=torch.FloatTensor):
super(GANLoss, self).__init__()
self.real_label = target_real_label # 真实标签为1
self.fake_label = target_fake_label # 虚假标签为0
self.real_label_var = None
self.fake_label_var = None
self.Tensor = tensor
if use_lsgan: # 是否使用lsgan的loss损失
self.loss = nn.MSELoss()
else:
self.loss = nn.BCELoss()
def get_target_tensor(self, input, target_is_real): # 获取目标标签张量
target_tensor = None
if target_is_real: # 表示获取真实标签的目标张量
create_label = ((self.real_label_var is None) or
(self.real_label_var.numel() != input.numel()))
if create_label:
real_tensor = self.Tensor(input.size()).fill_(self.real_label)
# 创建一个形状与输入相同的张量,
# 并填充为真实标签值,
# 然后将其封装为不可训练的 PyTorch 变量 Variable,
# 并赋值给 self.real_label_var。
# 最终,返回真实标签变量 self.real_label_var。
self.real_label_var = Variable(real_tensor, requires_grad=False)
target_tensor = self.real_label_var
else: # 表示获取生成标签的目标张量
create_label = ((self.fake_label_var is None) or
(self.fake_label_var.numel() != input.numel()))
if create_label:
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
# 创建一个形状与输入相同的张量,
# 并填充为生成标签值,
# 然后将其封装为不可训练的 PyTorch 变量Variable,
# 并赋值给 self.fake_label_var。
# 最终,返回生成标签变量 self.fake_label_var 。
self.fake_label_var = Variable(fake_tensor, requires_grad=False)
target_tensor = self.fake_label_var
return target_tensor
def __call__(self, input, target_is_real):
target_tensor = self.get_target_tensor(input, target_is_real)
return self.loss(input, target_tensor)
这段代码主要作用是定义了一个 GAN 损失的类 GANLoss
,用于计算生成对抗网络 (GAN) 的生成器和判别器的损失。
主要参数:
use_lsgan
:一个布尔值,表示是否使用均方误差损失(True)还是二进制交叉熵损失(False)。target_real_label
:真实标签的目标值,默认为1.0。target_fake_label
:生成标签的目标值,默认为0.0。tensor
:用于创建标签张量的 PyTorch 张量类型,默认为torch.FloatTensor
。主要方法和属性包括:
loss
:根据 use_lsgan
初始化的时候选择使用 MSELoss 还是 BCELoss。get_target_tensor
:用于获取目标标签张量,根据 target_is_real
和类内部的真假标签值。__call__
:计算 GAN 损失,传入输入张量 input
和一个布尔值 target_is_real
,表示是否计算真实标签的损失。② class DiscLossWGANGP
class DiscLossWGANGP():
def __init__(self):
self.LAMBDA = 10
def name(self):
return 'DiscLossWGAN-GP'
def initialize(self, opt, tensor):
# DiscLossLS.initialize(self, opt, tensor)
self.LAMBDA = 10
# def get_g_loss(self, net, realA, fakeB):
# # First, G(A) should fake the discriminator
# self.D_fake = net.forward(fakeB)
# return -self.D_fake.mean()
def calc_gradient_penalty(self, netD, real_data, fake_data):
alpha = torch.rand(1, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = interpolates.cuda()
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates = netD.forward(interpolates)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA
return gradient_penalty
这段代码主要作用是定义了一个用于计算 Wasserstein GAN with Gradient Penalty (WGAN-GP) 损失的类 DiscLossWGANGP
。
主要的方法和属性包括:
__init__
:构造函数,初始化 LAMBDA
参数,该参数用于控制渐变惩罚的强度,默认为10。name
:返回损失的名称,这里为 'DiscLossWGAN-GP'。initialize
:初始化方法,用于设定一些参数。在这里,对 LAMBDA
进行了重新设置为10。calc_gradient_penalty
:计算渐变惩罚项的方法。该方法接受判别器网络 netD
、真实数据 real_data
和生成数据 fake_data
作为输入。首先,通过插值方法创建一个介于真实数据和生成数据之间的样本集合。然后,计算这些插值样本通过判别器的输出,并计算相对于插值样本的梯度。最终,计算渐变惩罚项,即梯度的范数减1的平方的均值乘以 LAMBDA
参数。③ class ResnetGenerator
class ResnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6,
gpu_ids=[], padding_type='reflect'):
assert (n_blocks >= 0)
super(ResnetGenerator, self).__init__()
self.input_nc = input_nc
self.output_nc = output_nc
self.ngf = ngf
self.gpu_ids = gpu_ids
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling):
mult = 2 ** i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3,
stride=2, padding=1),
norm_layer(ngf * mult * 2),
nn.ReLU(True)]
mult = 2 ** n_downsampling
for i in range(n_blocks):
model += [
ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout)]
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2,
padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True)]
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input):
if self.gpu_ids and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)
这段代码主要作用是定义一个生成器网络类 ResnetGenerator
,用于实现带残差块的生成器结构。生成器的主要目标是将输入图像转换为目标域的图像。
主要参数和方法包括:
__init__
:构造函数,定义了生成器的结构。接受一系列参数,包括输入通道数 input_nc
,输出通道数 output_nc
,生成器的特征数 ngf
,规范化层 norm_layer
,是否使用 dropout use_dropout
,残差块的数量 n_blocks
,GPU 设备的列表 gpu_ids
以及填充类型 padding_type
。
forward
:前向传播方法,将输入张量通过生成器网络进行转换。在这里,根据是否使用 GPU,选择在单个 GPU 上运行或在多个 GPU 上并行运行。
生成器的网络结构包括:
ReflectionPad2d
),将输入图像进行填充。Conv2d
),将填充后的输入映射到特征图,使用 ReLU 激活函数。Conv2d
,规范化层,ReLU 激活函数),通过多个下采样层减小特征图的大小。ResnetBlock
),通过多个残差块学习图像的细节和结构。ConvTranspose2d
,规范化层,ReLU 激活函数),通过多个上采样层增加特征图的大小。ReflectionPad2d
)。Conv2d
),将最终的特征图映射到输出通道。④? class ResnetBlock
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, use_dropout):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
这段代码主要作用是定义 ResNet 块的类 ResnetBlock
,用于构建生成器中的残差连接块。每个 ResNet 块包含两个卷积层,每个卷积层后跟着归一化层和 ReLU 激活函数。
⑤?class UnetGenerator
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False, gpu_ids=[], skip=False, opt=None):
super(UnetGenerator, self).__init__()
self.gpu_ids = gpu_ids
self.opt = opt
# currently support only input_nc == output_nc
assert (input_nc == output_nc)
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, norm_layer=norm_layer, innermost=True, opt=opt)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, unet_block, norm_layer=norm_layer,
use_dropout=use_dropout, opt=opt)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, unet_block, norm_layer=norm_layer, opt=opt)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, unet_block, norm_layer=norm_layer, opt=opt)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, unet_block, norm_layer=norm_layer, opt=opt)
unet_block = UnetSkipConnectionBlock(output_nc, ngf, unet_block, outermost=True, norm_layer=norm_layer, opt=opt)
if skip == True:
skipmodule = SkipModule(unet_block, opt)
self.model = skipmodule
else:
self.model = unet_block
def forward(self, input):
if self.gpu_ids and isinstance(input.data, torch.cuda.FloatTensor):
return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
else:
return self.model(input)
这段代码主要作用是实现 U-Net 生成器的类 UnetGenerator
,用于图像到图像的转换任务。
U-Net 生成器的结构包括:
UnetSkipConnectionBlock
模块实现 U-Net 结构。UnetSkipConnectionBlock
模块进行堆叠。output_nc
。如果设置了 skip
参数为 True
,则会使用 SkipModule
对 U-Net 结构进行进一步的封装。
⑥ class SkipModule
class SkipModule(nn.Module):
def __init__(self, submodule, opt):
super(SkipModule, self).__init__()
self.submodule = submodule
self.opt = opt
def forward(self, x):
latent = self.submodule(x)
return self.opt.skip * x + latent, latent
这段代码主要作用是通过SkipModule
?模块添加跳跃连接。
⑦ class UnetSkipConnectionBlock
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False,
opt=None):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
downconv = nn.Conv2d(outer_nc, inner_nc, kernel_size=4,
stride=2, padding=1)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if opt.use_norm == 0:
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv]
up = [uprelu, upconv]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv]
up = [uprelu, upconv]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
else:
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([self.model(x), x], 1)
这段代码主要作用是通过UnetSkipConnectionBlock
?模块构建 U-Net 中的下采样和上采样块。它可以包含子模块,并具有跳跃连接。
主要参数:
outer_nc
:??输出通道数。inner_nc
:??内部通道数。submodule
:??可选的子模块。outermost
:??是否为最外层模块。innermost
:??是否为最内层模块。norm_layer
:??规范化层的类型。use_dropout
:??是否使用 dropout。opt
:? 一些其他选项。该模块包含以下组件:
⑧ class NLayerDiscriminator
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, gpu_ids=[]):
super(NLayerDiscriminator, self).__init__()
self.gpu_ids = gpu_ids
kw = 4
padw = int(np.ceil((kw - 1) / 2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
# if len(self.gpu_ids) and isinstance(input.data, torch.cuda.FloatTensor):
# return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
# else:
return self.model(input)
这段代码主要作用是通过NLayerDiscriminator
?多层鉴别器模块判别输入图像的真实性。它包含多个卷积层,每一层都包括卷积、规范化和 LeakyReLU 激活函数。
主要参数:
input_nc
:? 输入通道数。ndf
:? 初始卷积层的输出通道数。n_layers
:? 鉴别器包含的卷积层的数量。norm_layer
:? 规范化层的类型。use_sigmoid
:? 是否在输出层使用 Sigmoid 激活函数。gpu_ids
:? GPU 的 ID 列表。该模块的结构包括:
use_sigmoid
为 True
,则在最后添加 Sigmoid 激活函数。⑨ class NoNormDiscriminator
class NoNormDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, use_sigmoid=False, gpu_ids=[]):
super(NoNormDiscriminator, self).__init__()
self.gpu_ids = gpu_ids
kw = 4
padw = int(np.ceil((kw - 1) / 2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def forward(self, input):
# if len(self.gpu_ids) and isinstance(input.data, torch.cuda.FloatTensor):
# return nn.parallel.data_parallel(self.model, input, self.gpu_ids)
# else:
return self.model(input)
NoNormDiscriminator
是一个没有规范化层的鉴别器模块。它与 NLayerDiscriminator
的区别在于去除了规范化层,每个卷积层后面直接接 LeakyReLU 激活函数。
?⑩ class FCDiscriminator
class FCDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=3, use_sigmoid=False, gpu_ids=[], patch=False):
super(FCDiscriminator, self).__init__()
self.gpu_ids = gpu_ids
self.use_sigmoid = use_sigmoid
kw = 4
padw = int(np.ceil((kw - 1) / 2))
sequence = [
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers):
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
kernel_size=kw, stride=1, padding=padw),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]
if patch:
self.linear = nn.Linear(7 * 7, 1)
else:
self.linear = nn.Linear(13 * 13, 1)
if use_sigmoid:
self.sigmoid = nn.Sigmoid()
self.model = nn.Sequential(*sequence)
def forward(self, input):
batchsize = input.size()[0]
output = self.model(input)
output = output.view(batchsize, -1)
# print(output.size())
output = self.linear(output)
if self.use_sigmoid:
print("sigmoid")
output = self.sigmoid(output)
return output
FCDiscriminator
是一个基于卷积神经网络的鉴别器模块,用于图像分类任务。它的主要特点是可以根据 patch
参数选择输出全局分类还是局部分类。
???class Unet_resize_conv
class Unet_resize_conv(nn.Module):
def __init__(self, opt, skip):
super(Unet_resize_conv, self).__init__()
self.opt = opt
self.skip = skip
p = 1
# self.conv1_1 = nn.Conv2d(4, 32, 3, padding=p)
if opt.self_attention:
self.conv1_1 = nn.Conv2d(4, 32, 3, padding=p)
# self.conv1_1 = nn.Conv2d(3, 32, 3, padding=p)
self.downsample_1 = nn.MaxPool2d(2)
self.downsample_2 = nn.MaxPool2d(2)
self.downsample_3 = nn.MaxPool2d(2)
self.downsample_4 = nn.MaxPool2d(2)
else:
self.conv1_1 = nn.Conv2d(3, 32, 3, padding=p)
self.LReLU1_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn1_1 = SynBN2d(32) if self.opt.syn_norm else nn.BatchNorm2d(32)
self.conv1_2 = nn.Conv2d(32, 32, 3, padding=p)
self.LReLU1_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn1_2 = SynBN2d(32) if self.opt.syn_norm else nn.BatchNorm2d(32)
self.max_pool1 = nn.AvgPool2d(2) if self.opt.use_avgpool == 1 else nn.MaxPool2d(2)
self.conv2_1 = nn.Conv2d(32, 64, 3, padding=p)
self.LReLU2_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn2_1 = SynBN2d(64) if self.opt.syn_norm else nn.BatchNorm2d(64)
self.conv2_2 = nn.Conv2d(64, 64, 3, padding=p)
self.LReLU2_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn2_2 = SynBN2d(64) if self.opt.syn_norm else nn.BatchNorm2d(64)
self.max_pool2 = nn.AvgPool2d(2) if self.opt.use_avgpool == 1 else nn.MaxPool2d(2)
self.conv3_1 = nn.Conv2d(64, 128, 3, padding=p)
self.LReLU3_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn3_1 = SynBN2d(128) if self.opt.syn_norm else nn.BatchNorm2d(128)
self.conv3_2 = nn.Conv2d(128, 128, 3, padding=p)
self.LReLU3_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn3_2 = SynBN2d(128) if self.opt.syn_norm else nn.BatchNorm2d(128)
self.max_pool3 = nn.AvgPool2d(2) if self.opt.use_avgpool == 1 else nn.MaxPool2d(2)
self.conv4_1 = nn.Conv2d(128, 256, 3, padding=p)
self.LReLU4_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn4_1 = SynBN2d(256) if self.opt.syn_norm else nn.BatchNorm2d(256)
self.conv4_2 = nn.Conv2d(256, 256, 3, padding=p)
self.LReLU4_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn4_2 = SynBN2d(256) if self.opt.syn_norm else nn.BatchNorm2d(256)
self.max_pool4 = nn.AvgPool2d(2) if self.opt.use_avgpool == 1 else nn.MaxPool2d(2)
self.conv5_1 = nn.Conv2d(256, 512, 3, padding=p)
self.LReLU5_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn5_1 = SynBN2d(512) if self.opt.syn_norm else nn.BatchNorm2d(512)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=p)
self.LReLU5_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn5_2 = SynBN2d(512) if self.opt.syn_norm else nn.BatchNorm2d(512)
# self.deconv5 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.deconv5 = nn.Conv2d(512, 256, 3, padding=p)
self.conv6_1 = nn.Conv2d(512, 256, 3, padding=p)
self.LReLU6_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn6_1 = SynBN2d(256) if self.opt.syn_norm else nn.BatchNorm2d(256)
self.conv6_2 = nn.Conv2d(256, 256, 3, padding=p)
self.LReLU6_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn6_2 = SynBN2d(256) if self.opt.syn_norm else nn.BatchNorm2d(256)
# self.deconv6 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.deconv6 = nn.Conv2d(256, 128, 3, padding=p)
self.conv7_1 = nn.Conv2d(256, 128, 3, padding=p)
self.LReLU7_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn7_1 = SynBN2d(128) if self.opt.syn_norm else nn.BatchNorm2d(128)
self.conv7_2 = nn.Conv2d(128, 128, 3, padding=p)
self.LReLU7_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn7_2 = SynBN2d(128) if self.opt.syn_norm else nn.BatchNorm2d(128)
# self.deconv7 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.deconv7 = nn.Conv2d(128, 64, 3, padding=p)
self.conv8_1 = nn.Conv2d(128, 64, 3, padding=p)
self.LReLU8_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn8_1 = SynBN2d(64) if self.opt.syn_norm else nn.BatchNorm2d(64)
self.conv8_2 = nn.Conv2d(64, 64, 3, padding=p)
self.LReLU8_2 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn8_2 = SynBN2d(64) if self.opt.syn_norm else nn.BatchNorm2d(64)
# self.deconv8 = nn.ConvTranspose2d(64, 32, 2, stride=2)
self.deconv8 = nn.Conv2d(64, 32, 3, padding=p)
self.conv9_1 = nn.Conv2d(64, 32, 3, padding=p)
self.LReLU9_1 = nn.LeakyReLU(0.2, inplace=True)
if self.opt.use_norm == 1:
self.bn9_1 = SynBN2d(32) if self.opt.syn_norm else nn.BatchNorm2d(32)
self.conv9_2 = nn.Conv2d(32, 32, 3, padding=p)
self.LReLU9_2 = nn.LeakyReLU(0.2, inplace=True)
self.conv10 = nn.Conv2d(32, 3, 1)
if self.opt.tanh:
self.tanh = nn.Tanh()
def depth_to_space(self, input, block_size):
block_size_sq = block_size * block_size
output = input.permute(0, 2, 3, 1)
(batch_size, d_height, d_width, d_depth) = output.size()
s_depth = int(d_depth / block_size_sq)
s_width = int(d_width * block_size)
s_height = int(d_height * block_size)
t_1 = output.resize(batch_size, d_height, d_width, block_size_sq, s_depth)
spl = t_1.split(block_size, 3)
stack = [t_t.resize(batch_size, d_height, s_width, s_depth) for t_t in spl]
output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4).resize(batch_size, s_height, s_width,
s_depth)
output = output.permute(0, 3, 1, 2)
return output
def forward(self, input, gray):
flag = 0
if input.size()[3] > 2200:
avg = nn.AvgPool2d(2)
input = avg(input)
gray = avg(gray)
flag = 1
# pass
input, pad_left, pad_right, pad_top, pad_bottom = pad_tensor(input)
gray, pad_left, pad_right, pad_top, pad_bottom = pad_tensor(gray)
if self.opt.self_attention:
gray_2 = self.downsample_1(gray)
gray_3 = self.downsample_2(gray_2)
gray_4 = self.downsample_3(gray_3)
gray_5 = self.downsample_4(gray_4)
if self.opt.use_norm == 1:
if self.opt.self_attention:
x = self.bn1_1(self.LReLU1_1(self.conv1_1(torch.cat((input, gray), 1))))
# x = self.bn1_1(self.LReLU1_1(self.conv1_1(input)))
else:
x = self.bn1_1(self.LReLU1_1(self.conv1_1(input)))
conv1 = self.bn1_2(self.LReLU1_2(self.conv1_2(x)))
x = self.max_pool1(conv1)
x = self.bn2_1(self.LReLU2_1(self.conv2_1(x)))
conv2 = self.bn2_2(self.LReLU2_2(self.conv2_2(x)))
x = self.max_pool2(conv2)
x = self.bn3_1(self.LReLU3_1(self.conv3_1(x)))
conv3 = self.bn3_2(self.LReLU3_2(self.conv3_2(x)))
x = self.max_pool3(conv3)
x = self.bn4_1(self.LReLU4_1(self.conv4_1(x)))
conv4 = self.bn4_2(self.LReLU4_2(self.conv4_2(x)))
x = self.max_pool4(conv4)
x = self.bn5_1(self.LReLU5_1(self.conv5_1(x)))
x = x * gray_5 if self.opt.self_attention else x
conv5 = self.bn5_2(self.LReLU5_2(self.conv5_2(x)))
conv5 = F.upsample(conv5, scale_factor=2, mode='bilinear')
conv4 = conv4 * gray_4 if self.opt.self_attention else conv4
up6 = torch.cat([self.deconv5(conv5), conv4], 1)
x = self.bn6_1(self.LReLU6_1(self.conv6_1(up6)))
conv6 = self.bn6_2(self.LReLU6_2(self.conv6_2(x)))
conv6 = F.upsample(conv6, scale_factor=2, mode='bilinear')
conv3 = conv3 * gray_3 if self.opt.self_attention else conv3
up7 = torch.cat([self.deconv6(conv6), conv3], 1)
x = self.bn7_1(self.LReLU7_1(self.conv7_1(up7)))
conv7 = self.bn7_2(self.LReLU7_2(self.conv7_2(x)))
conv7 = F.upsample(conv7, scale_factor=2, mode='bilinear')
conv2 = conv2 * gray_2 if self.opt.self_attention else conv2
up8 = torch.cat([self.deconv7(conv7), conv2], 1)
x = self.bn8_1(self.LReLU8_1(self.conv8_1(up8)))
conv8 = self.bn8_2(self.LReLU8_2(self.conv8_2(x)))
conv8 = F.upsample(conv8, scale_factor=2, mode='bilinear')
conv1 = conv1 * gray if self.opt.self_attention else conv1
up9 = torch.cat([self.deconv8(conv8), conv1], 1)
x = self.bn9_1(self.LReLU9_1(self.conv9_1(up9)))
conv9 = self.LReLU9_2(self.conv9_2(x))
latent = self.conv10(conv9)
if self.opt.times_residual:
latent = latent * gray
# output = self.depth_to_space(conv10, 2)
if self.opt.tanh:
latent = self.tanh(latent)
if self.skip:
if self.opt.linear_add:
if self.opt.latent_threshold:
latent = F.relu(latent)
elif self.opt.latent_norm:
latent = (latent - torch.min(latent)) / (torch.max(latent) - torch.min(latent))
input = (input - torch.min(input)) / (torch.max(input) - torch.min(input))
output = latent + input * self.opt.skip
output = output * 2 - 1
else:
if self.opt.latent_threshold:
latent = F.relu(latent)
elif self.opt.latent_norm:
latent = (latent - torch.min(latent)) / (torch.max(latent) - torch.min(latent))
output = latent + input * self.opt.skip
else:
output = latent
if self.opt.linear:
output = output / torch.max(torch.abs(output))
elif self.opt.use_norm == 0:
if self.opt.self_attention:
x = self.LReLU1_1(self.conv1_1(torch.cat((input, gray), 1)))
else:
x = self.LReLU1_1(self.conv1_1(input))
conv1 = self.LReLU1_2(self.conv1_2(x))
x = self.max_pool1(conv1)
x = self.LReLU2_1(self.conv2_1(x))
conv2 = self.LReLU2_2(self.conv2_2(x))
x = self.max_pool2(conv2)
x = self.LReLU3_1(self.conv3_1(x))
conv3 = self.LReLU3_2(self.conv3_2(x))
x = self.max_pool3(conv3)
x = self.LReLU4_1(self.conv4_1(x))
conv4 = self.LReLU4_2(self.conv4_2(x))
x = self.max_pool4(conv4)
x = self.LReLU5_1(self.conv5_1(x))
x = x * gray_5 if self.opt.self_attention else x
conv5 = self.LReLU5_2(self.conv5_2(x))
conv5 = F.upsample(conv5, scale_factor=2, mode='bilinear')
conv4 = conv4 * gray_4 if self.opt.self_attention else conv4
up6 = torch.cat([self.deconv5(conv5), conv4], 1)
x = self.LReLU6_1(self.conv6_1(up6))
conv6 = self.LReLU6_2(self.conv6_2(x))
conv6 = F.upsample(conv6, scale_factor=2, mode='bilinear')
conv3 = conv3 * gray_3 if self.opt.self_attention else conv3
up7 = torch.cat([self.deconv6(conv6), conv3], 1)
x = self.LReLU7_1(self.conv7_1(up7))
conv7 = self.LReLU7_2(self.conv7_2(x))
conv7 = F.upsample(conv7, scale_factor=2, mode='bilinear')
conv2 = conv2 * gray_2 if self.opt.self_attention else conv2
up8 = torch.cat([self.deconv7(conv7), conv2], 1)
x = self.LReLU8_1(self.conv8_1(up8))
conv8 = self.LReLU8_2(self.conv8_2(x))
conv8 = F.upsample(conv8, scale_factor=2, mode='bilinear')
conv1 = conv1 * gray if self.opt.self_attention else conv1
up9 = torch.cat([self.deconv8(conv8), conv1], 1)
x = self.LReLU9_1(self.conv9_1(up9))
conv9 = self.LReLU9_2(self.conv9_2(x))
latent = self.conv10(conv9)
if self.opt.times_residual:
latent = latent * gray
if self.opt.tanh:
latent = self.tanh(latent)
if self.skip:
if self.opt.linear_add:
if self.opt.latent_threshold:
latent = F.relu(latent)
elif self.opt.latent_norm:
latent = (latent - torch.min(latent)) / (torch.max(latent) - torch.min(latent))
input = (input - torch.min(input)) / (torch.max(input) - torch.min(input))
output = latent + input * self.opt.skip
output = output * 2 - 1
else:
if self.opt.latent_threshold:
latent = F.relu(latent)
elif self.opt.latent_norm:
latent = (latent - torch.min(latent)) / (torch.max(latent) - torch.min(latent))
output = latent + input * self.opt.skip
else:
output = latent
if self.opt.linear:
output = output / torch.max(torch.abs(output))
output = pad_tensor_back(output, pad_left, pad_right, pad_top, pad_bottom)
latent = pad_tensor_back(latent, pad_left, pad_right, pad_top, pad_bottom)
gray = pad_tensor_back(gray, pad_left, pad_right, pad_top, pad_bottom)
if flag == 1:
output = F.upsample(output, scale_factor=2, mode='bilinear')
gray = F.upsample(gray, scale_factor=2, mode='bilinear')
if self.skip:
return output, latent
else:
return output
这段代码主要作用是定义了一个Unet_resize_conv类,用于图像处理任务的深度学习模型,通常用于图像分割等任务。
代码的主要结构和功能:
初始化函数 (__init__
):
opt
和skip
。opt.self_attention
)、是否使用归一化(opt.use_norm
)、是否使用平均池化(opt.use_avgpool
)等。前向传播函数 (forward
):
input
和gray
。深度到空间函数 (depth_to_space
):
一些辅助函数:
pad_tensor
)和反向填充(pad_tensor_back
)等。剩下非重点的就不再解读了~
在本文最上面已经放了项目地址,作者给出了源码,数据集等,这些都可以在里面下载到,ReadMe中也给出了详细的运行方法,对小白来说还是比较友好的。
我跑的过程没记录,哈哈~
这块网上有很多博主讲解的比较详细,大家可以参考一下:
EnlightenGAN训练复现记录_enlightengan代码复现-CSDN博客
代码调试记录EnlightenGAN 一_代码调试记录怎么写-CSDN博客
EnlightenGAN的运行环境搭建和训练自己的数据 - 知乎 (zhihu.com)
EnlightenGAN的代码运行过程问题记录_enlightengan运行不了-CSDN博客
踩坑记录:
实现效果:
可以看到,增强效果还是不错滴~