基于多策略混合改进的麻雀搜索算法(ISSA)优化支持向量机(SVM)的数据分类预测。可实现二分类和多分类。
程序已经调试好,替换数据集直接运行出图,非常适合新手小白。
预测适应度曲线,预测效果等图像
1、sin混沌映射进行种群初始化
2、采用动态自适应权重优化发现者位置。
3、柯西变异
发挥柯西算子的扰动能力,提高算法的全局搜索能力!
4、反向搜索策略
通过反向学习策略找到对应的反向解,然后评估出保存较好的解,更易寻到最优解!
注:建议使用matlab2020a以上版本,避免乱码
%% 参数设置
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/134843675
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229