1、生成数据集
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
2、读取数据集
def load_array(data_arrays, batch_size, is_train=True):
# 布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据
"""构造一个PyTorch数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
结果:
3、定义模型
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
4、初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
#均值为 0,标准差为 0.01
5、定义损失函数
loss = nn.MSELoss()
6、定义优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
7、训练
num_epochs = 5
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X) ,y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
结果:
来源李沐老师,仅供学习