PaddleSeg学习4——paddle模型使用TensorRT推理(c++)

发布时间:2024年01月12日

1 模型末端添加softmax和argmax算子

前文 PaddleSeg c++部署OCRNet+HRNet模型中的语义分割模型输出为float32类型,模型不含softmax和argmax处理,导致在项目应用过程中后处理耗时较高。
通过PaddleSeg/tools/export.py在网络末端增加softmax和argmax算子,解决应用中的后处理耗时问题。

参考文档PaddleSeg/docs/model_export_cn.md导出预测模型。将导出的预测模型文件保存在output/inference_model文件夹中,如下。模型输出类型为int32

./output/inference_model
  ├── deploy.yaml            # 部署相关的配置文件,主要说明数据预处理的方式
  ├── model.pdmodel          # 预测模型的拓扑结构文件
  ├── model.pdiparams        # 预测模型的权重文件
  └── model.pdiparams.info   # 参数额外信息,一般无需关注网络输出类型为int32。
python tools/export.py \
       --config  configs\ocrnet\ocrnet_hrnetw18_cityscapes_1024x512_160k_lovasz_softmax.yml\
       --model_path output\iter_12000\model.pdparams \
       --save_dir output\inference_model
       --output_op argmax

PaddleSeg v2.0以前export.py中不含argmaxsoftmax参数选项,可通过以下代码在模型末端增加softmaxargmax算子。

import argparse
import os
import paddle
import yaml
from paddleseg.cvlibs import Config
from paddleseg.utils import logger

def parse_args():
    parser = argparse.ArgumentParser(description='Model export.')
    # params of training
    parser.add_argument(
        "--config",
        dest="cfg",
        help="The config file.",
        default=None,
        type=str,
        required=True)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output')
    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for evaluation',
        type=str,
        default=None)

    return parser.parse_args()
    
class SavedSegmentationNet(paddle.nn.Layer):
    def __init__(self, net, without_argmax=False, with_softmax=False):
        super().__init__()
        self.net = net
        self.post_processer = PostPorcesser(without_argmax, with_softmax)

    def forward(self, x):
        outs = self.net(x)
        outs = self.post_processer(outs)
        return outs

class PostPorcesser(paddle.nn.Layer):
    def __init__(self, without_argmax, with_softmax):
        super().__init__()
        self.without_argmax = without_argmax
        self.with_softmax = with_softmax

    def forward(self, outs):
        new_outs = []
        for out in outs:
            if self.with_softmax:
                out = paddle.nn.functional.softmax(out, axis=1)
            if not self.without_argmax:
                out = paddle.argmax(out, axis=1)
            new_outs.append(out)
        return new_outs

def main(args):
    os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
    cfg = Config(args.cfg)
    net = cfg.model

    if args.model_path:
        para_state_dict = paddle.load(args.model_path)
        net.set_dict(para_state_dict)
        logger.info('Loaded trained params of model successfully.')

    # 增加softmax、argmax处理
    new_net = SavedSegmentationNet(net, True,True)
    
    new_net.eval()
    new_net = paddle.jit.to_static(
        new_net,
        input_spec=[
            paddle.static.InputSpec(
                shape=[None, 3, None, None], dtype='float32')
        ])
    save_path = os.path.join(args.save_dir, 'model')
    paddle.jit.save(new_net, save_path)

    yml_file = os.path.join(args.save_dir, 'deploy.yaml')
    with open(yml_file, 'w') as file:
        transforms = cfg.export_config.get('transforms', [{
            'type': 'Normalize'
        }])
        data = {
            'Deploy': {
                'transforms': transforms,
                'model': 'model.pdmodel',
                'params': 'model.pdiparams'
            }
        }
        yaml.dump(data, file)

    logger.info(f'Model is saved in {args.save_dir}.')

if __name__ == '__main__':
    args = parse_args()
    main(args)

2 paddle模型转onnx模型

参考文档 PaddleSeg/docs/model_export_onnx_cn.md
参考文档Paddle2ONNX

(1)安装Paddle2ONNX

pip install paddle2onnx

(2)模型转换
执行如下命令,使用Paddle2ONNXoutput/inference_model文件夹中的预测模型导出为ONNX格式模型。将导出的预测模型文件保存为model.onnx

paddle2onnx --model_dir output/inference_model \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --opset_version 12 \
            --save_file model.onnx \
            --enable_dev_version True

3 onnx模型转TensorRT模型

3.1 安装TensorRT-8.5.3.1

参考TensorRt安装

3.2 使用 trtexec 将onnx模型编译优化导出为engine模型

由于是动态输入,因此指定了输入尺寸范围和最优尺寸。将导出的预测模型文件保存为model.trt

trtexec.exe 
	--onnx=model.onnx 
	--explicitBatch --fp16 
	--minShapes=x:1x3x540x960 
	--optShapes=x:1x3x720x1280 
	--maxShapes=x:1x3x1080x1920 
	--saveEngine=model.trt

4 TensorRT模型推理测试

参考TensorRt动态尺寸输入的分割模型测试

5 完整代码

namespace TRTSegmentation {

	class Logger : public nvinfer1::ILogger
	{
	public:
		Logger(Severity severity = Severity::kWARNING) :
			severity_(severity) {}

		virtual void log(Severity severity, const char* msg) noexcept override
		{
			// suppress info-level messages
			if (severity <= severity_) {
				//std::cout << msg << std::endl;
			}
		}

		nvinfer1::ILogger& getTRTLogger() noexcept
		{
			return *this;
		}
	private:
		Severity severity_;
	};

	struct InferDeleter
	{
		template <typename T>
		void operator()(T* obj) const
		{
			delete obj;
		}
	};

	template <typename T>
	using SampleUniquePtr = std::unique_ptr<T, InferDeleter>;

	class LaneSegInferTRT
	{
	public:
		LaneSegInferTRT(const std::string seg_model_dir = "") {
			this->seg_model_dir_ = seg_model_dir;
			InitPredictor();
		}

		~LaneSegInferTRT()
		{
			cudaFree(bindings_[0]);
			cudaFree(bindings_[1]);
		}
		void PredictSeg(
			const cv::Mat &image_mat, 
			std::vector<PaddleSegmentation::DataLane> &solLanes /*实线*/,
			std::vector<PaddleSegmentation::DataLane> &dasLanes /*虚线*/,
			std::vector<double>* times = nullptr);
	private:
		void InitPredictor();
		// Preprocess image and copy data to input buffer
		cv::Mat Preprocess(const cv::Mat& image_mat);
		// Postprocess image
		void Postprocess(int rows, 
						int cols, 
						std::vector<int> &out_data,
						std::vector<PaddleSegmentation::DataLane> &solLanes,
						std::vector<PaddleSegmentation::DataLane> &dasLanes);

	private:
		//static const int num_classes_ = 15;
		std::shared_ptr<nvinfer1::ICudaEngine> mEngine_;
		SampleUniquePtr<nvinfer1::IExecutionContext> context_seg_lane_;
		std::vector<void*> bindings_;
		std::string seg_model_dir_;
		int gpuMaxBufSize = 1280 * 720; // output
	};

}//namespace PaddleSegmentation
#include "LaneSegInferTRT.hpp"
namespace {
	class Logger : public nvinfer1::ILogger
	{
	public:
		Logger(Severity severity = Severity::kWARNING) :
			severity_(severity) {}

		virtual void log(Severity severity, const char* msg) noexcept override
		{
			// suppress info-level messages
			if (severity <= severity_) {
				//std::cout << msg << std::endl;
			}
		}

		nvinfer1::ILogger& getTRTLogger() noexcept
		{
			return *this;
		}
	private:
		Severity severity_;
	};
}

namespace TRTSegmentation {

#define CHECK(status)                                                                                                  \
    do                                                                                                                 \
    {                                                                                                                  \
        auto ret = (status);                                                                                           \
        if (ret != 0)                                                                                                  \
        {                                                                                                              \
            std::cerr << "Cuda failure: " << ret << std::endl;                                                         \
		}                                                                                                              \
	} while (0)

	void LaneSegInferTRT::InitPredictor()
	{
		if (seg_model_dir_.empty()) {
			throw "Predictor must receive seg_model!";
		}

		std::ifstream ifs(seg_model_dir_, std::ifstream::binary);
		if (!ifs) {
			throw "seg_model_dir error!";
		}

		ifs.seekg(0, std::ios_base::end);
		int size = ifs.tellg();
		ifs.seekg(0, std::ios_base::beg);

		std::unique_ptr<char> pData(new char[size]);
		ifs.read(pData.get(), size);

		ifs.close();

		// engine模型
		Logger logger(nvinfer1::ILogger::Severity::kVERBOSE);

		SampleUniquePtr<nvinfer1::IRuntime> runtime{nvinfer1::createInferRuntime(logger.getTRTLogger()) };
		mEngine_ = std::shared_ptr<nvinfer1::ICudaEngine>(
			runtime->deserializeCudaEngine(pData.get(), size), InferDeleter());
			
		this->context_seg_lane_ = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine_->createExecutionContext());

		bindings_.resize(mEngine_->getNbBindings());

		CHECK(cudaMalloc(&bindings_[0], sizeof(float) * 3 * gpuMaxBufSize));    // n*3*h*w
		CHECK(cudaMalloc(&bindings_[1], sizeof(int) * 1 * gpuMaxBufSize));      // n*1*h*w
	}
	
	cv::Mat LaneSegInferTRT::Preprocess(const cv::Mat& image_mat)
	{
		cv::Mat img;
		cv::cvtColor(image_mat, img, cv::COLOR_BGR2RGB);

		if (true/*is_normalize*/) {
			img.convertTo(img, CV_32F, 1.0 / 255, 0);
			img = (img - 0.5) / 0.5;
		}
		return img;
	}

void LaneSegInferTRT::PredictSeg(
			const cv::Mat &image_mat,
			std::vector<PaddleSegmentation::DataLane> &solLanes ,
			std::vector<PaddleSegmentation::DataLane> &dasLanes,
			std::vector<double>* times)
	{
		// Preprocess image
		cv::Mat img = Preprocess(image_mat);		
		int rows = img.rows;
		int cols = img.cols;
		this->context_seg_lane_->setBindingDimensions(0, nvinfer1::Dims4{ 1, 3 , rows, cols });
		int chs = img.channels();
		std::vector<float> input_data(1 * chs * rows * cols, 0.0f);
		hwc_img_2_chw_data(img, input_data.data());		
		CHECK(cudaMemcpy(bindings_[0], static_cast<const void*>(input_data.data()), 3 * img.rows * img.cols * sizeof(float), cudaMemcpyHostToDevice));

		// Run predictor 推理
		context_seg_lane_->executeV2(bindings_.data());
		// Get output tensor		
		std::vector<int> out_data(1 * 1 * rows * cols);
		CHECK(cudaMemcpy(static_cast<void*>(out_data.data()), bindings_[1], out_data.size() * sizeof(int), cudaMemcpyDeviceToHost));
		// Postprocessing
		Postprocess(rows, cols, out_data, solLanes,dasLanes);
	}

	void LaneSegInferTRT::Postprocess(int rows, int cols, vector<int>& out_data,std::vector<PaddleSegmentation::DataLane> &solLanes,
		std::vector<PaddleSegmentation::DataLane> &dasLanes)
	{
		PaddleSegmentation::LanePostProcess laneNet(rows, cols);
		laneNet.lanePostprocessForTRT(out_data,solLanes,dasLanes);
	}	

}//namespace PaddleSegmentation

6 测试结果

在这里插入图片描述
在这里插入图片描述

文章来源:https://blog.csdn.net/u014377655/article/details/135529211
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。