基于深度学习的停车位关键点检测系统是一种以深度学习技术为基础的智能停车解决方案。该系统可以自动识别停车场中的停车位,并确定每个停车位的边界框和关键点位置。
以下是该系统的几个关键点:
该系统使用深度学习算法,如卷积神经网络(CNN)和回归模型,来训练模型和预测停车位的位置和关键点。通过大量的数据集和反复优化模型,该系统能够实现高精度的停车位检测和定位。
该系统通过识别停车位的关键点,如停车线、轮廓线等,在停车位的定位和跟踪上表现出色。这些关键点可以帮助系统更好地理解停车位的形状和大小,从而提高停车位检测的准确性和稳定性。
该系统具有良好的实时性和可扩展性,可以适应不同规模和复杂程度的停车场。它可以通过增加计算资源和改进算法来实现更高的性能和更广泛的应用。
该系统可以广泛应用于停车场管理、交通流量监测、智能停车导航等领域。它能够帮助停车场管理者更好地管理停车资源,提高停车效率和用户体验。
基于深度学习的停车位关键点检测系统是一种高度智能的停车解决方案,它可以实现精准的停车位识别和定位,并有望在未来得到进一步的发展和应用。
DMPR-PS是一种基于深度学习的停车位检测系统,旨在实时监测和识别停车场中的停车位。该系统利用图像处理和分析技术,通过摄像头获取停车场的实时图像,并自动检测停车位的位置和状态。本文详细介绍了DMPR-PS系统的算法原理、创新点和实验结果,并对其性能进行了评估。
DMPR-PS系统的算法创新主要体现在以下几个方面:
深度学习模型:DMPR-PS系统采用了深度学习模型来进行停车位的检测。通过大规模数据集的训练,该模型可以自动学习停车位的特征,并准确地进行检测和分类。
2. 多尺度检测:为了应对不同大小的停车位,DMPR-PS系统使用了多尺度检测策略。通过在不同尺度下进行检测,可以提高系统对各种大小停车位的检测准确率。
3. 实时性能:DMPR-PS系统具有较高的实时性能。它能够快速处理实时视频流,并在短时间内完成停车位的检测和识别,满足实时监测的需求。
?
通过对多个停车场场景的实验测试,DMPR-PS系统展现了良好的性能。实验结果表明,该系统在检测准确率和实时性能方面都具有较高的水平。
python版本3.6
pytorch版本1.4+
pip install -r requirements.txt
gcn-parking-slot
可以通过以下链接下载两个预训练模型。
链接 代码 描述
Model0 bc0a 使用ps2.0子集进行训练,如[1]所述。
Model1 pgig 使用完整的ps2.0数据集进行训练。
可以在此处找到原始的ps2.0数据和标签。提取并组织如下:
├── datasets
│ └── parking_slot
│ ├── annotations
│ ├── ps_json_label
│ ├── testing
│ └── training
将当前目录导出到PYTHONPATH:
export PYTHONPATH=`pwd`
python3 tools/demo.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth
python3 tools/train.py -c config/ps_gat.yaml
python3 tools/test.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pt
h
QQ767172261
import cv2
import time
import torch
import pprint
import numpy as np
from pathlib import Path
from psdet.utils.config import get_config
from psdet.utils.common import get_logger
from psdet.models.builder import build_model
def draw_parking_slot(image, pred_dicts):
slots_pred = pred_dicts['slots_pred']
width = 512
height = 512
VSLOT_MIN_DIST = 0.044771278151623496
VSLOT_MAX_DIST = 0.1099427457599304
HSLOT_MIN_DIST = 0.15057789144568634
HSLOT_MAX_DIST = 0.44449496544202816
SHORT_SEPARATOR_LENGTH = 0.199519231
LONG_SEPARATOR_LENGTH = 0.46875
junctions = []
for j in range(len(slots_pred[0])):
position = slots_pred[0][j][1]
p0_x = width * position[0] - 0.5
p0_y = height * position[1] - 0.5
p1_x = width * position[2] - 0.5
p1_y = height * position[3] - 0.5
vec = np.array([p1_x - p0_x, p1_y - p0_y])
vec = vec / np.linalg.norm(vec)
distance =( position[0] - position[2] )**2 + ( position[1] - position[3] )**2
if VSLOT_MIN_DIST <= distance <= VSLOT_MAX_DIST:
separating_length = LONG_SEPARATOR_LENGTH
else:
separating_length = SHORT_SEPARATOR_LENGTH
p2_x = p0_x + height * separating_length * vec[1]
p2_y = p0_y - width * separating_length * vec[0]
p3_x = p1_x + height * separating_length * vec[1]
p3_y = p1_y - width * separating_length * vec[0]
p0_x = int(round(p0_x))
p0_y = int(round(p0_y))
p1_x = int(round(p1_x))
p1_y = int(round(p1_y))
p2_x = int(round(p2_x))
p2_y = int(round(p2_y))
p3_x = int(round(p3_x))
p3_y = int(round(p3_y))
cv2.line(image, (p0_x, p0_y), (p1_x, p1_y), (255, 0, 0), 2)
cv2.line(image, (p0_x, p0_y), (p2_x, p2_y), (255, 0, 0), 2)
cv2.line(image, (p1_x, p1_y), (p3_x, p3_y), (255, 0, 0), 2)
#cv2.circle(image, (p0_x, p0_y), 3, (0, 0, 255), 4)
junctions.append((p0_x, p0_y))
junctions.append((p1_x, p1_y))
for junction in junctions:
cv2.circle(image, junction, 3, (0, 0, 255), 4)
return image
def main():
cfg = get_config()
logger = get_logger(cfg.log_dir, cfg.tag)
logger.info(pprint.pformat(cfg))
model = build_model(cfg.model)
logger.info(model)
image_dir = Path(cfg.data_root) / 'testing' / 'outdoor-normal daylight'
display = False
# load checkpoint
model.load_params_from_file(filename=cfg.ckpt, logger=logger, to_cpu=False)
model.cuda()
model.eval()
if display:
car = cv2.imread('images/car.png')
car = cv2.resize(car, (512, 512))
with torch.no_grad():
for img_path in image_dir.glob('*.jpg'):
img_name = img_path.stem
data_dict = {}
image = cv2.imread(str(img_path))
image0 = cv2.resize(image, (512, 512))
image = image0/255.
data_dict['image'] = torch.from_numpy(image).float().permute(2, 0, 1).unsqueeze(0).cuda()
start_time = time.time()
pred_dicts, ret_dict = model(data_dict)
sec_per_example = (time.time() - start_time)
print('Info speed: %.4f second per example.' % sec_per_example)
if display:
image = draw_parking_slot(image0, pred_dicts)
image[145:365, 210:300] = 0
image += car
cv2.imshow('image',image.astype(np.uint8))
cv2.waitKey(50)
save_dir = Path(cfg.output_dir) / 'predictions'
save_dir.mkdir(parents=True, exist_ok=True)
save_path = save_dir / ('%s.jpg' % img_name)
cv2.imwrite(str(save_path), image)
if display:
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
?
DMPR-PS系统是一种基于深度学习的停车位检测系统,通过创新的算法设计和实时性能优化,可以有效地监测和识别停车场中的停车位。该系统在提高停车场资源利用率和管理效率方面具有重要的应用价值。