往期的文章我们分享了人脸的识别以及如何进行人脸年龄的检测,本期文章我们结合人脸识别的
模型进行人脸年龄的实时检测
人脸年龄的检测步骤
0、打开摄像头,获取图片数据
1、对图片进行人脸的检测
2、把检测到的人脸数据给年龄检测模型去检测
3、把检测结果实时呈现到图片上
import numpy as np
import cv2import osAGE_LIST = ["(0-2)", "(4-6)", "(8-12)", "(15-20)", "(25-32)",
"(38-43)", "(48-53)", "(60-100)"]
prototxtFacePath = "model/deploy.prototxt"
weightsFacePath = "model/res10_300x300_ssd_iter_140000.caffemodel"
faceNet = cv2.dnn.readNet(prototxtFacePath, weightsFacePath)prototxtAgePath = "model/age_deploy.prototxt"
weightsAgePath = "model/age_net.caffemodel"
ageNet = cv2.dnn.readNet(prototxtAgePath, weightsAgePath)
初始化模型年龄段,由于模型是按照年龄段来进行训练的,当然你也可以使用大量的数据,进行更准确的年龄模型训练
然后cv2.dnn.readNet加载人脸识别的模型,可参考往期文章
顺便在这里介绍一下由人工智能研究所出品的专栏,人工智能目标检测与目标追踪
有兴趣的小伙伴们可以一起探讨