目录
? ? ? ?通过UKF无迹卡尔曼滤波对电池的SOC进行估计,并对比电池真实的SOC,输出两者的对比仿真结果。
版本:MATLAB2022a
0021
? ? ? ? ?电池状态估计,特别是电池的荷电状态(State of Charge, SoC)估计,在电动汽车、混合动力汽车以及其他电池应用领域中至关重要。无迹卡尔曼滤波(Unscented Kalman Filter, UKF)是一种非线性滤波方法,特别适用于处理非线性系统的状态估计问题。
? ? ? ?为了估计电池的SoC,首先需要建立一个电池模型。电池模型通常包括电气模型、热模型和老化模型等。在这里,我们主要关注电气模型,它描述了电池的电压、电流和SoC之间的关系。
电气模型可以用以下非线性方程表示:
? ? ? ?其中,V?是电池端电压,SoC?是电池的荷电状态,I?是电池电流,T?是电池温度,Qnom??是电池的额定容量,Δt?是时间步长,f?是一个非线性函数,描述了电池的电气特性。
? ? ? 无迹卡尔曼滤波是一种基于无迹变换(Unscented Transformation)的非线性滤波方法。它通过选择一组确定的样本点(称为sigma点)来逼近非线性函数的概率分布,从而避免了线性化带来的误差。无迹卡尔曼滤波的滤波步骤包括预测和更新两个步骤。
? ? ? ?在电池SoC估计中,我们可以将电池的SoC作为状态向量x,电池电流作为输入向量u,电池端电压作为观测向量y。然后,通过无迹卡尔曼滤波的预测和更新步骤,实时估计电池的SoC。
? ? ? ? 无迹卡尔曼滤波的优点是能够处理非线性系统的状态估计问题,同时避免了线性化带来的误差。然而,无迹卡尔曼滤波的性能也依赖于电池模型的准确性和参数的选择。
v